Loading…

Spherical Diffusion Model with Semi-Permeable Boundary: A Transfer Function Approach

The derivation of suitable analytical models is an important step for the design and analysis of molecular communication systems. However, many existing models have limited applicability in practical scenarios due to various simplifications (e.g., assumption of an unbounded environment). In this pap...

Full description

Saved in:
Bibliographic Details
Main Authors: Schafer, Maximilian, Wicke, Wayan, Haselmayr, Wetner, Rabenstein, Rudolf, Schober, Robert
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7
container_issue
container_start_page 1
container_title
container_volume
creator Schafer, Maximilian
Wicke, Wayan
Haselmayr, Wetner
Rabenstein, Rudolf
Schober, Robert
description The derivation of suitable analytical models is an important step for the design and analysis of molecular communication systems. However, many existing models have limited applicability in practical scenarios due to various simplifications (e.g., assumption of an unbounded environment). In this paper, we develop a realistic model for particle diffusion in a bounded sphere and particle transport through a semi-permeable boundary. This model can be used for various applications, such as modeling of inter-/intra-cell communication or the release process of drug carriers. The proposed analytical model is based on a transfer function approach, which allows for fast numerical evaluation and provides insights into the impact of the relevant molecular communication system parameters. The proposed solution of the bounded spherical diffusion problem is formulated in terms of a state-space description and the semi-permeable boundary is accounted for by a feedback loop. Particle-based simulations verify the proposed modeling approach.
doi_str_mv 10.1109/ICC40277.2020.9149441
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9149441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9149441</ieee_id><sourcerecordid>9149441</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-bc62ac9264b5e040312251577969fe995a264df0367b2d835a836ade4a0a9aa43</originalsourceid><addsrcrecordid>eNotkNtKw0AURUdBsK1-gQjzA6lnbsmMbzG2WqgotD6Xk-SEjOTGJEX8eyv2aT9s1maxGbsXsBQC3MMmyzTIJFlKkLB0QjutxQWbi0RaYcA6eclmwikbCWvVNZuP4xeAkU6JGdvvhpqCL7Dhz76qjqPvO_7Wl9Twbz_VfEetjz4otIR5Q_ypP3Ylhp9HnvJ9wG6sKPD1sSumPy4dhtBjUd-wqwqbkW7PuWCf69U-e4227y-bLN1GXoKaoryIJRZOxjo3BBqUkNIIkyQudhU5Z_BUlRWoOMllaZVBq2IsSSOgQ9Rqwe7-dz0RHYbg25Pa4fyA-gVwFU_I</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Spherical Diffusion Model with Semi-Permeable Boundary: A Transfer Function Approach</title><source>IEEE Xplore All Conference Series</source><creator>Schafer, Maximilian ; Wicke, Wayan ; Haselmayr, Wetner ; Rabenstein, Rudolf ; Schober, Robert</creator><creatorcontrib>Schafer, Maximilian ; Wicke, Wayan ; Haselmayr, Wetner ; Rabenstein, Rudolf ; Schober, Robert</creatorcontrib><description>The derivation of suitable analytical models is an important step for the design and analysis of molecular communication systems. However, many existing models have limited applicability in practical scenarios due to various simplifications (e.g., assumption of an unbounded environment). In this paper, we develop a realistic model for particle diffusion in a bounded sphere and particle transport through a semi-permeable boundary. This model can be used for various applications, such as modeling of inter-/intra-cell communication or the release process of drug carriers. The proposed analytical model is based on a transfer function approach, which allows for fast numerical evaluation and provides insights into the impact of the relevant molecular communication system parameters. The proposed solution of the bounded spherical diffusion problem is formulated in terms of a state-space description and the semi-permeable boundary is accounted for by a feedback loop. Particle-based simulations verify the proposed modeling approach.</description><identifier>EISSN: 1938-1883</identifier><identifier>EISBN: 1728150892</identifier><identifier>EISBN: 9781728150895</identifier><identifier>DOI: 10.1109/ICC40277.2020.9149441</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Eigenvalues and eigenfunctions ; Ions ; Mathematical model ; Numerical models ; Transfer functions ; Transforms</subject><ispartof>ICC 2020 - 2020 IEEE International Conference on Communications (ICC), 2020, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9149441$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23910,23911,25119,27904,54533,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9149441$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schafer, Maximilian</creatorcontrib><creatorcontrib>Wicke, Wayan</creatorcontrib><creatorcontrib>Haselmayr, Wetner</creatorcontrib><creatorcontrib>Rabenstein, Rudolf</creatorcontrib><creatorcontrib>Schober, Robert</creatorcontrib><title>Spherical Diffusion Model with Semi-Permeable Boundary: A Transfer Function Approach</title><title>ICC 2020 - 2020 IEEE International Conference on Communications (ICC)</title><addtitle>ICC</addtitle><description>The derivation of suitable analytical models is an important step for the design and analysis of molecular communication systems. However, many existing models have limited applicability in practical scenarios due to various simplifications (e.g., assumption of an unbounded environment). In this paper, we develop a realistic model for particle diffusion in a bounded sphere and particle transport through a semi-permeable boundary. This model can be used for various applications, such as modeling of inter-/intra-cell communication or the release process of drug carriers. The proposed analytical model is based on a transfer function approach, which allows for fast numerical evaluation and provides insights into the impact of the relevant molecular communication system parameters. The proposed solution of the bounded spherical diffusion problem is formulated in terms of a state-space description and the semi-permeable boundary is accounted for by a feedback loop. Particle-based simulations verify the proposed modeling approach.</description><subject>Analytical models</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Ions</subject><subject>Mathematical model</subject><subject>Numerical models</subject><subject>Transfer functions</subject><subject>Transforms</subject><issn>1938-1883</issn><isbn>1728150892</isbn><isbn>9781728150895</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkNtKw0AURUdBsK1-gQjzA6lnbsmMbzG2WqgotD6Xk-SEjOTGJEX8eyv2aT9s1maxGbsXsBQC3MMmyzTIJFlKkLB0QjutxQWbi0RaYcA6eclmwikbCWvVNZuP4xeAkU6JGdvvhpqCL7Dhz76qjqPvO_7Wl9Twbz_VfEetjz4otIR5Q_ypP3Ylhp9HnvJ9wG6sKPD1sSumPy4dhtBjUd-wqwqbkW7PuWCf69U-e4227y-bLN1GXoKaoryIJRZOxjo3BBqUkNIIkyQudhU5Z_BUlRWoOMllaZVBq2IsSSOgQ9Rqwe7-dz0RHYbg25Pa4fyA-gVwFU_I</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Schafer, Maximilian</creator><creator>Wicke, Wayan</creator><creator>Haselmayr, Wetner</creator><creator>Rabenstein, Rudolf</creator><creator>Schober, Robert</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>202006</creationdate><title>Spherical Diffusion Model with Semi-Permeable Boundary: A Transfer Function Approach</title><author>Schafer, Maximilian ; Wicke, Wayan ; Haselmayr, Wetner ; Rabenstein, Rudolf ; Schober, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-bc62ac9264b5e040312251577969fe995a264df0367b2d835a836ade4a0a9aa43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical models</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Ions</topic><topic>Mathematical model</topic><topic>Numerical models</topic><topic>Transfer functions</topic><topic>Transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Schafer, Maximilian</creatorcontrib><creatorcontrib>Wicke, Wayan</creatorcontrib><creatorcontrib>Haselmayr, Wetner</creatorcontrib><creatorcontrib>Rabenstein, Rudolf</creatorcontrib><creatorcontrib>Schober, Robert</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schafer, Maximilian</au><au>Wicke, Wayan</au><au>Haselmayr, Wetner</au><au>Rabenstein, Rudolf</au><au>Schober, Robert</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Spherical Diffusion Model with Semi-Permeable Boundary: A Transfer Function Approach</atitle><btitle>ICC 2020 - 2020 IEEE International Conference on Communications (ICC)</btitle><stitle>ICC</stitle><date>2020-06</date><risdate>2020</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><eissn>1938-1883</eissn><eisbn>1728150892</eisbn><eisbn>9781728150895</eisbn><abstract>The derivation of suitable analytical models is an important step for the design and analysis of molecular communication systems. However, many existing models have limited applicability in practical scenarios due to various simplifications (e.g., assumption of an unbounded environment). In this paper, we develop a realistic model for particle diffusion in a bounded sphere and particle transport through a semi-permeable boundary. This model can be used for various applications, such as modeling of inter-/intra-cell communication or the release process of drug carriers. The proposed analytical model is based on a transfer function approach, which allows for fast numerical evaluation and provides insights into the impact of the relevant molecular communication system parameters. The proposed solution of the bounded spherical diffusion problem is formulated in terms of a state-space description and the semi-permeable boundary is accounted for by a feedback loop. Particle-based simulations verify the proposed modeling approach.</abstract><pub>IEEE</pub><doi>10.1109/ICC40277.2020.9149441</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1938-1883
ispartof ICC 2020 - 2020 IEEE International Conference on Communications (ICC), 2020, p.1-7
issn 1938-1883
language eng
recordid cdi_ieee_primary_9149441
source IEEE Xplore All Conference Series
subjects Analytical models
Eigenvalues and eigenfunctions
Ions
Mathematical model
Numerical models
Transfer functions
Transforms
title Spherical Diffusion Model with Semi-Permeable Boundary: A Transfer Function Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A39%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Spherical%20Diffusion%20Model%20with%20Semi-Permeable%20Boundary:%20A%20Transfer%20Function%20Approach&rft.btitle=ICC%202020%20-%202020%20IEEE%20International%20Conference%20on%20Communications%20(ICC)&rft.au=Schafer,%20Maximilian&rft.date=2020-06&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.eissn=1938-1883&rft_id=info:doi/10.1109/ICC40277.2020.9149441&rft.eisbn=1728150892&rft.eisbn_list=9781728150895&rft_dat=%3Cieee_CHZPO%3E9149441%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-bc62ac9264b5e040312251577969fe995a264df0367b2d835a836ade4a0a9aa43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9149441&rfr_iscdi=true