Loading…
Spherical Diffusion Model with Semi-Permeable Boundary: A Transfer Function Approach
The derivation of suitable analytical models is an important step for the design and analysis of molecular communication systems. However, many existing models have limited applicability in practical scenarios due to various simplifications (e.g., assumption of an unbounded environment). In this pap...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 7 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Schafer, Maximilian Wicke, Wayan Haselmayr, Wetner Rabenstein, Rudolf Schober, Robert |
description | The derivation of suitable analytical models is an important step for the design and analysis of molecular communication systems. However, many existing models have limited applicability in practical scenarios due to various simplifications (e.g., assumption of an unbounded environment). In this paper, we develop a realistic model for particle diffusion in a bounded sphere and particle transport through a semi-permeable boundary. This model can be used for various applications, such as modeling of inter-/intra-cell communication or the release process of drug carriers. The proposed analytical model is based on a transfer function approach, which allows for fast numerical evaluation and provides insights into the impact of the relevant molecular communication system parameters. The proposed solution of the bounded spherical diffusion problem is formulated in terms of a state-space description and the semi-permeable boundary is accounted for by a feedback loop. Particle-based simulations verify the proposed modeling approach. |
doi_str_mv | 10.1109/ICC40277.2020.9149441 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9149441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9149441</ieee_id><sourcerecordid>9149441</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-bc62ac9264b5e040312251577969fe995a264df0367b2d835a836ade4a0a9aa43</originalsourceid><addsrcrecordid>eNotkNtKw0AURUdBsK1-gQjzA6lnbsmMbzG2WqgotD6Xk-SEjOTGJEX8eyv2aT9s1maxGbsXsBQC3MMmyzTIJFlKkLB0QjutxQWbi0RaYcA6eclmwikbCWvVNZuP4xeAkU6JGdvvhpqCL7Dhz76qjqPvO_7Wl9Twbz_VfEetjz4otIR5Q_ypP3Ylhp9HnvJ9wG6sKPD1sSumPy4dhtBjUd-wqwqbkW7PuWCf69U-e4227y-bLN1GXoKaoryIJRZOxjo3BBqUkNIIkyQudhU5Z_BUlRWoOMllaZVBq2IsSSOgQ9Rqwe7-dz0RHYbg25Pa4fyA-gVwFU_I</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Spherical Diffusion Model with Semi-Permeable Boundary: A Transfer Function Approach</title><source>IEEE Xplore All Conference Series</source><creator>Schafer, Maximilian ; Wicke, Wayan ; Haselmayr, Wetner ; Rabenstein, Rudolf ; Schober, Robert</creator><creatorcontrib>Schafer, Maximilian ; Wicke, Wayan ; Haselmayr, Wetner ; Rabenstein, Rudolf ; Schober, Robert</creatorcontrib><description>The derivation of suitable analytical models is an important step for the design and analysis of molecular communication systems. However, many existing models have limited applicability in practical scenarios due to various simplifications (e.g., assumption of an unbounded environment). In this paper, we develop a realistic model for particle diffusion in a bounded sphere and particle transport through a semi-permeable boundary. This model can be used for various applications, such as modeling of inter-/intra-cell communication or the release process of drug carriers. The proposed analytical model is based on a transfer function approach, which allows for fast numerical evaluation and provides insights into the impact of the relevant molecular communication system parameters. The proposed solution of the bounded spherical diffusion problem is formulated in terms of a state-space description and the semi-permeable boundary is accounted for by a feedback loop. Particle-based simulations verify the proposed modeling approach.</description><identifier>EISSN: 1938-1883</identifier><identifier>EISBN: 1728150892</identifier><identifier>EISBN: 9781728150895</identifier><identifier>DOI: 10.1109/ICC40277.2020.9149441</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Eigenvalues and eigenfunctions ; Ions ; Mathematical model ; Numerical models ; Transfer functions ; Transforms</subject><ispartof>ICC 2020 - 2020 IEEE International Conference on Communications (ICC), 2020, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9149441$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23910,23911,25119,27904,54533,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9149441$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schafer, Maximilian</creatorcontrib><creatorcontrib>Wicke, Wayan</creatorcontrib><creatorcontrib>Haselmayr, Wetner</creatorcontrib><creatorcontrib>Rabenstein, Rudolf</creatorcontrib><creatorcontrib>Schober, Robert</creatorcontrib><title>Spherical Diffusion Model with Semi-Permeable Boundary: A Transfer Function Approach</title><title>ICC 2020 - 2020 IEEE International Conference on Communications (ICC)</title><addtitle>ICC</addtitle><description>The derivation of suitable analytical models is an important step for the design and analysis of molecular communication systems. However, many existing models have limited applicability in practical scenarios due to various simplifications (e.g., assumption of an unbounded environment). In this paper, we develop a realistic model for particle diffusion in a bounded sphere and particle transport through a semi-permeable boundary. This model can be used for various applications, such as modeling of inter-/intra-cell communication or the release process of drug carriers. The proposed analytical model is based on a transfer function approach, which allows for fast numerical evaluation and provides insights into the impact of the relevant molecular communication system parameters. The proposed solution of the bounded spherical diffusion problem is formulated in terms of a state-space description and the semi-permeable boundary is accounted for by a feedback loop. Particle-based simulations verify the proposed modeling approach.</description><subject>Analytical models</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Ions</subject><subject>Mathematical model</subject><subject>Numerical models</subject><subject>Transfer functions</subject><subject>Transforms</subject><issn>1938-1883</issn><isbn>1728150892</isbn><isbn>9781728150895</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkNtKw0AURUdBsK1-gQjzA6lnbsmMbzG2WqgotD6Xk-SEjOTGJEX8eyv2aT9s1maxGbsXsBQC3MMmyzTIJFlKkLB0QjutxQWbi0RaYcA6eclmwikbCWvVNZuP4xeAkU6JGdvvhpqCL7Dhz76qjqPvO_7Wl9Twbz_VfEetjz4otIR5Q_ypP3Ylhp9HnvJ9wG6sKPD1sSumPy4dhtBjUd-wqwqbkW7PuWCf69U-e4227y-bLN1GXoKaoryIJRZOxjo3BBqUkNIIkyQudhU5Z_BUlRWoOMllaZVBq2IsSSOgQ9Rqwe7-dz0RHYbg25Pa4fyA-gVwFU_I</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Schafer, Maximilian</creator><creator>Wicke, Wayan</creator><creator>Haselmayr, Wetner</creator><creator>Rabenstein, Rudolf</creator><creator>Schober, Robert</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>202006</creationdate><title>Spherical Diffusion Model with Semi-Permeable Boundary: A Transfer Function Approach</title><author>Schafer, Maximilian ; Wicke, Wayan ; Haselmayr, Wetner ; Rabenstein, Rudolf ; Schober, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-bc62ac9264b5e040312251577969fe995a264df0367b2d835a836ade4a0a9aa43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical models</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Ions</topic><topic>Mathematical model</topic><topic>Numerical models</topic><topic>Transfer functions</topic><topic>Transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Schafer, Maximilian</creatorcontrib><creatorcontrib>Wicke, Wayan</creatorcontrib><creatorcontrib>Haselmayr, Wetner</creatorcontrib><creatorcontrib>Rabenstein, Rudolf</creatorcontrib><creatorcontrib>Schober, Robert</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schafer, Maximilian</au><au>Wicke, Wayan</au><au>Haselmayr, Wetner</au><au>Rabenstein, Rudolf</au><au>Schober, Robert</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Spherical Diffusion Model with Semi-Permeable Boundary: A Transfer Function Approach</atitle><btitle>ICC 2020 - 2020 IEEE International Conference on Communications (ICC)</btitle><stitle>ICC</stitle><date>2020-06</date><risdate>2020</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><eissn>1938-1883</eissn><eisbn>1728150892</eisbn><eisbn>9781728150895</eisbn><abstract>The derivation of suitable analytical models is an important step for the design and analysis of molecular communication systems. However, many existing models have limited applicability in practical scenarios due to various simplifications (e.g., assumption of an unbounded environment). In this paper, we develop a realistic model for particle diffusion in a bounded sphere and particle transport through a semi-permeable boundary. This model can be used for various applications, such as modeling of inter-/intra-cell communication or the release process of drug carriers. The proposed analytical model is based on a transfer function approach, which allows for fast numerical evaluation and provides insights into the impact of the relevant molecular communication system parameters. The proposed solution of the bounded spherical diffusion problem is formulated in terms of a state-space description and the semi-permeable boundary is accounted for by a feedback loop. Particle-based simulations verify the proposed modeling approach.</abstract><pub>IEEE</pub><doi>10.1109/ICC40277.2020.9149441</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 1938-1883 |
ispartof | ICC 2020 - 2020 IEEE International Conference on Communications (ICC), 2020, p.1-7 |
issn | 1938-1883 |
language | eng |
recordid | cdi_ieee_primary_9149441 |
source | IEEE Xplore All Conference Series |
subjects | Analytical models Eigenvalues and eigenfunctions Ions Mathematical model Numerical models Transfer functions Transforms |
title | Spherical Diffusion Model with Semi-Permeable Boundary: A Transfer Function Approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A39%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Spherical%20Diffusion%20Model%20with%20Semi-Permeable%20Boundary:%20A%20Transfer%20Function%20Approach&rft.btitle=ICC%202020%20-%202020%20IEEE%20International%20Conference%20on%20Communications%20(ICC)&rft.au=Schafer,%20Maximilian&rft.date=2020-06&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.eissn=1938-1883&rft_id=info:doi/10.1109/ICC40277.2020.9149441&rft.eisbn=1728150892&rft.eisbn_list=9781728150895&rft_dat=%3Cieee_CHZPO%3E9149441%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-bc62ac9264b5e040312251577969fe995a264df0367b2d835a836ade4a0a9aa43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9149441&rfr_iscdi=true |