Loading…
Deepfakes Detection with Automatic Face Weighting
Altered and manipulated multimedia is increasingly present and widely distributed via social media platforms. Advanced video manipulation tools enable the generation of highly realistic-looking altered multimedia. While many methods have been presented to detect manipulations, most of them fail when...
Saved in:
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c255t-3c958ab5af1f8b5bd2a314a3747351199c458b5785a8d312615080fa7e3dfb593 |
---|---|
cites | |
container_end_page | 2859 |
container_issue | |
container_start_page | 2851 |
container_title | |
container_volume | |
creator | Montserrat, Daniel Mas Hao, Hanxiang Yarlagadda, S. K. Baireddy, Sriram Shao, Ruiting Horvath, Janos Bartusiak, Emily Yang, Justin Guera, David Zhu, Fengqing Delp, Edward J. |
description | Altered and manipulated multimedia is increasingly present and widely distributed via social media platforms. Advanced video manipulation tools enable the generation of highly realistic-looking altered multimedia. While many methods have been presented to detect manipulations, most of them fail when evaluated with data outside of the datasets used in research environments. In order to address this problem, the Deepfake Detection Challenge (DFDC) provides a large dataset of videos containing realistic manipulations and an evaluation system that ensures that methods work quickly and accurately, even when faced with challenging data. In this paper, we introduce a method based on convolutional neural networks (CNNs) and recurrent neural networks (RNNs) that extracts visual and temporal features from faces present in videos to accurately detect manipulations. The method is evaluated with the DFDC dataset, providing competitive results compared to other techniques. |
doi_str_mv | 10.1109/CVPRW50498.2020.00342 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9150724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9150724</ieee_id><sourcerecordid>9150724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-3c958ab5af1f8b5bd2a314a3747351199c458b5785a8d312615080fa7e3dfb593</originalsourceid><addsrcrecordid>eNotjt1KAzEQRqMgWGufQIR9gV1nkswmuSxbq0JBEbWXJZudtFH7Qzcivr0LevXB4XD4hLhGqBDB3TRvT89LAu1sJUFCBaC0PBEXaKRFp2qgUzGSWENpCOtzMen7dwBAsEROjQTOmA_Rf3BfzDhzyGm_K75T3hTTr7zf-pxCMfeBiyWn9San3fpSnEX_2fPkf8fidX770tyXi8e7h2a6KIMkyqUKjqxvyUeMtqW2k16h9spoowjRuaBp4MaSt51CWSOBhegNqy62w7exuPrrJmZeHY5p648_KzdoRmr1C5TNQ_0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Deepfakes Detection with Automatic Face Weighting</title><source>IEEE Xplore All Conference Series</source><creator>Montserrat, Daniel Mas ; Hao, Hanxiang ; Yarlagadda, S. K. ; Baireddy, Sriram ; Shao, Ruiting ; Horvath, Janos ; Bartusiak, Emily ; Yang, Justin ; Guera, David ; Zhu, Fengqing ; Delp, Edward J.</creator><creatorcontrib>Montserrat, Daniel Mas ; Hao, Hanxiang ; Yarlagadda, S. K. ; Baireddy, Sriram ; Shao, Ruiting ; Horvath, Janos ; Bartusiak, Emily ; Yang, Justin ; Guera, David ; Zhu, Fengqing ; Delp, Edward J.</creatorcontrib><description>Altered and manipulated multimedia is increasingly present and widely distributed via social media platforms. Advanced video manipulation tools enable the generation of highly realistic-looking altered multimedia. While many methods have been presented to detect manipulations, most of them fail when evaluated with data outside of the datasets used in research environments. In order to address this problem, the Deepfake Detection Challenge (DFDC) provides a large dataset of videos containing realistic manipulations and an evaluation system that ensures that methods work quickly and accurately, even when faced with challenging data. In this paper, we introduce a method based on convolutional neural networks (CNNs) and recurrent neural networks (RNNs) that extracts visual and temporal features from faces present in videos to accurately detect manipulations. The method is evaluated with the DFDC dataset, providing competitive results compared to other techniques.</description><identifier>EISSN: 2160-7516</identifier><identifier>EISBN: 1728193605</identifier><identifier>EISBN: 9781728193601</identifier><identifier>DOI: 10.1109/CVPRW50498.2020.00342</identifier><language>eng</language><publisher>IEEE</publisher><subject>Face ; Feature extraction ; Recurrent neural networks ; Social network services ; Streaming media ; Training</subject><ispartof>2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2020, p.2851-2859</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c255t-3c958ab5af1f8b5bd2a314a3747351199c458b5785a8d312615080fa7e3dfb593</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9150724$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9150724$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Montserrat, Daniel Mas</creatorcontrib><creatorcontrib>Hao, Hanxiang</creatorcontrib><creatorcontrib>Yarlagadda, S. K.</creatorcontrib><creatorcontrib>Baireddy, Sriram</creatorcontrib><creatorcontrib>Shao, Ruiting</creatorcontrib><creatorcontrib>Horvath, Janos</creatorcontrib><creatorcontrib>Bartusiak, Emily</creatorcontrib><creatorcontrib>Yang, Justin</creatorcontrib><creatorcontrib>Guera, David</creatorcontrib><creatorcontrib>Zhu, Fengqing</creatorcontrib><creatorcontrib>Delp, Edward J.</creatorcontrib><title>Deepfakes Detection with Automatic Face Weighting</title><title>2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</title><addtitle>CVPRW</addtitle><description>Altered and manipulated multimedia is increasingly present and widely distributed via social media platforms. Advanced video manipulation tools enable the generation of highly realistic-looking altered multimedia. While many methods have been presented to detect manipulations, most of them fail when evaluated with data outside of the datasets used in research environments. In order to address this problem, the Deepfake Detection Challenge (DFDC) provides a large dataset of videos containing realistic manipulations and an evaluation system that ensures that methods work quickly and accurately, even when faced with challenging data. In this paper, we introduce a method based on convolutional neural networks (CNNs) and recurrent neural networks (RNNs) that extracts visual and temporal features from faces present in videos to accurately detect manipulations. The method is evaluated with the DFDC dataset, providing competitive results compared to other techniques.</description><subject>Face</subject><subject>Feature extraction</subject><subject>Recurrent neural networks</subject><subject>Social network services</subject><subject>Streaming media</subject><subject>Training</subject><issn>2160-7516</issn><isbn>1728193605</isbn><isbn>9781728193601</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjt1KAzEQRqMgWGufQIR9gV1nkswmuSxbq0JBEbWXJZudtFH7Qzcivr0LevXB4XD4hLhGqBDB3TRvT89LAu1sJUFCBaC0PBEXaKRFp2qgUzGSWENpCOtzMen7dwBAsEROjQTOmA_Rf3BfzDhzyGm_K75T3hTTr7zf-pxCMfeBiyWn9San3fpSnEX_2fPkf8fidX770tyXi8e7h2a6KIMkyqUKjqxvyUeMtqW2k16h9spoowjRuaBp4MaSt51CWSOBhegNqy62w7exuPrrJmZeHY5p648_KzdoRmr1C5TNQ_0</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Montserrat, Daniel Mas</creator><creator>Hao, Hanxiang</creator><creator>Yarlagadda, S. K.</creator><creator>Baireddy, Sriram</creator><creator>Shao, Ruiting</creator><creator>Horvath, Janos</creator><creator>Bartusiak, Emily</creator><creator>Yang, Justin</creator><creator>Guera, David</creator><creator>Zhu, Fengqing</creator><creator>Delp, Edward J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202006</creationdate><title>Deepfakes Detection with Automatic Face Weighting</title><author>Montserrat, Daniel Mas ; Hao, Hanxiang ; Yarlagadda, S. K. ; Baireddy, Sriram ; Shao, Ruiting ; Horvath, Janos ; Bartusiak, Emily ; Yang, Justin ; Guera, David ; Zhu, Fengqing ; Delp, Edward J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-3c958ab5af1f8b5bd2a314a3747351199c458b5785a8d312615080fa7e3dfb593</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Face</topic><topic>Feature extraction</topic><topic>Recurrent neural networks</topic><topic>Social network services</topic><topic>Streaming media</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Montserrat, Daniel Mas</creatorcontrib><creatorcontrib>Hao, Hanxiang</creatorcontrib><creatorcontrib>Yarlagadda, S. K.</creatorcontrib><creatorcontrib>Baireddy, Sriram</creatorcontrib><creatorcontrib>Shao, Ruiting</creatorcontrib><creatorcontrib>Horvath, Janos</creatorcontrib><creatorcontrib>Bartusiak, Emily</creatorcontrib><creatorcontrib>Yang, Justin</creatorcontrib><creatorcontrib>Guera, David</creatorcontrib><creatorcontrib>Zhu, Fengqing</creatorcontrib><creatorcontrib>Delp, Edward J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Montserrat, Daniel Mas</au><au>Hao, Hanxiang</au><au>Yarlagadda, S. K.</au><au>Baireddy, Sriram</au><au>Shao, Ruiting</au><au>Horvath, Janos</au><au>Bartusiak, Emily</au><au>Yang, Justin</au><au>Guera, David</au><au>Zhu, Fengqing</au><au>Delp, Edward J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Deepfakes Detection with Automatic Face Weighting</atitle><btitle>2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</btitle><stitle>CVPRW</stitle><date>2020-06</date><risdate>2020</risdate><spage>2851</spage><epage>2859</epage><pages>2851-2859</pages><eissn>2160-7516</eissn><eisbn>1728193605</eisbn><eisbn>9781728193601</eisbn><abstract>Altered and manipulated multimedia is increasingly present and widely distributed via social media platforms. Advanced video manipulation tools enable the generation of highly realistic-looking altered multimedia. While many methods have been presented to detect manipulations, most of them fail when evaluated with data outside of the datasets used in research environments. In order to address this problem, the Deepfake Detection Challenge (DFDC) provides a large dataset of videos containing realistic manipulations and an evaluation system that ensures that methods work quickly and accurately, even when faced with challenging data. In this paper, we introduce a method based on convolutional neural networks (CNNs) and recurrent neural networks (RNNs) that extracts visual and temporal features from faces present in videos to accurately detect manipulations. The method is evaluated with the DFDC dataset, providing competitive results compared to other techniques.</abstract><pub>IEEE</pub><doi>10.1109/CVPRW50498.2020.00342</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2160-7516 |
ispartof | 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2020, p.2851-2859 |
issn | 2160-7516 |
language | eng |
recordid | cdi_ieee_primary_9150724 |
source | IEEE Xplore All Conference Series |
subjects | Face Feature extraction Recurrent neural networks Social network services Streaming media Training |
title | Deepfakes Detection with Automatic Face Weighting |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T05%3A10%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Deepfakes%20Detection%20with%20Automatic%20Face%20Weighting&rft.btitle=2020%20IEEE/CVF%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20Workshops%20(CVPRW)&rft.au=Montserrat,%20Daniel%20Mas&rft.date=2020-06&rft.spage=2851&rft.epage=2859&rft.pages=2851-2859&rft.eissn=2160-7516&rft_id=info:doi/10.1109/CVPRW50498.2020.00342&rft.eisbn=1728193605&rft.eisbn_list=9781728193601&rft_dat=%3Cieee_CHZPO%3E9150724%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c255t-3c958ab5af1f8b5bd2a314a3747351199c458b5785a8d312615080fa7e3dfb593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9150724&rfr_iscdi=true |