Loading…

Edge inference for UWB ranging error correction using autoencoders

Indoor localization knows many applications, such as industry 4.0, warehouses, healthcare, drones, etc., where high accuracy becomes more critical than ever. Recent advances in ultra-wideband localization systems allow high accuracies for multiple active users in line-of-sight environments, while th...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020-01, Vol.8, p.1-1
Main Authors: Fontaine, Jaron, Ridolfi, Matteo, Van Herbruggen, Ben, Shahid, Adnan, De Poorter, Eli
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-43d8d98ee4ca2b7a547364a60c9aa8a6aaef4a417bee566ecd5786ec51441a173
cites cdi_FETCH-LOGICAL-c408t-43d8d98ee4ca2b7a547364a60c9aa8a6aaef4a417bee566ecd5786ec51441a173
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 8
creator Fontaine, Jaron
Ridolfi, Matteo
Van Herbruggen, Ben
Shahid, Adnan
De Poorter, Eli
description Indoor localization knows many applications, such as industry 4.0, warehouses, healthcare, drones, etc., where high accuracy becomes more critical than ever. Recent advances in ultra-wideband localization systems allow high accuracies for multiple active users in line-of-sight environments, while they still introduce errors above 300 mm in non-line-of-sight environments due to multi-path effects. Current work tries to improve the localization accuracy of ultra-wideband through offline error correction approaches using popular machine learning techniques. However, these techniques are still limited to simple environments with few multi-path effects and focus on offline correction. With the upcoming demand for high accuracy and low latency indoor localization systems, there is a need to deploy (online) efficient error correction techniques with fast response times in dynamic and complex environments. To address this, we propose (i) a novel semi-supervised autoencoder-based machine learning approach for improving ranging accuracy of ultra-wideband localization beyond the limitations of current improvements while aiming for performance improvements and a small memory footprint and (ii) an edge inference architecture for online UWB ranging error correction. As such, this paper allows the design of accurate localization systems by using machine learning for low-cost edge devices. Compared to a deep neural network (as state-of-the-art, with a baseline error of 75 mm) the proposed autoencoder achieves a 29% higher accuracy. The proposed approach leverages robust and accurate ultra-wideband localization, which reduces the errors from 214 mm without correction to 58 mm with correction. Validation of edge inference using the proposed autoencoder on a NVIDIA Jetson Nano demonstrates significant uplink bandwidth savings and allows up to 20 rapidly ranging anchors per edge GPU.
doi_str_mv 10.1109/ACCESS.2020.3012822
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9151945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9151945</ieee_id><doaj_id>oai_doaj_org_article_fd21771112f34d09862ef14002732ebe</doaj_id><sourcerecordid>2454393443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-43d8d98ee4ca2b7a547364a60c9aa8a6aaef4a417bee566ecd5786ec51441a173</originalsourceid><addsrcrecordid>eNpNUE1Lw0AQDaJgqf0FvQQ8p-7sRzY5tqFqoeChFo_LdDMJKTVbN8nBf-_WFHEub3i892Z4UTQHtgBg-dOyKNa73YIzzhaCAc84v4kmHNI8EUqkt__2-2jWdUcWJguU0pNotS5ripu2Ik-tpbhyPt5_rGKPbd20dUzeB8Y678n2jWvjobvQOPQu6F1JvnuI7io8dTS74jTaP6_fi9dk-_ayKZbbxEqW9YkUZVbmGZG0yA8aldQilZgymyNmmCJSJVGCPhCpNCVbKp0FUCAlIGgxjTZjbunwaM6--UT_bRw25pdwvjbo-8aeyFQlB60BgFdClizPUk4VSMa4FpwOFLIex6yzd18Ddb05usG34X3DpZIiF1KKoBKjynrXdZ6qv6vAzKV7M3ZvLt2ba_fBNR9dDRH9OXJQkEslfgAnpn6Z</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454393443</pqid></control><display><type>article</type><title>Edge inference for UWB ranging error correction using autoencoders</title><source>IEEE Xplore Open Access Journals</source><creator>Fontaine, Jaron ; Ridolfi, Matteo ; Van Herbruggen, Ben ; Shahid, Adnan ; De Poorter, Eli</creator><creatorcontrib>Fontaine, Jaron ; Ridolfi, Matteo ; Van Herbruggen, Ben ; Shahid, Adnan ; De Poorter, Eli</creatorcontrib><description>Indoor localization knows many applications, such as industry 4.0, warehouses, healthcare, drones, etc., where high accuracy becomes more critical than ever. Recent advances in ultra-wideband localization systems allow high accuracies for multiple active users in line-of-sight environments, while they still introduce errors above 300 mm in non-line-of-sight environments due to multi-path effects. Current work tries to improve the localization accuracy of ultra-wideband through offline error correction approaches using popular machine learning techniques. However, these techniques are still limited to simple environments with few multi-path effects and focus on offline correction. With the upcoming demand for high accuracy and low latency indoor localization systems, there is a need to deploy (online) efficient error correction techniques with fast response times in dynamic and complex environments. To address this, we propose (i) a novel semi-supervised autoencoder-based machine learning approach for improving ranging accuracy of ultra-wideband localization beyond the limitations of current improvements while aiming for performance improvements and a small memory footprint and (ii) an edge inference architecture for online UWB ranging error correction. As such, this paper allows the design of accurate localization systems by using machine learning for low-cost edge devices. Compared to a deep neural network (as state-of-the-art, with a baseline error of 75 mm) the proposed autoencoder achieves a 29% higher accuracy. The proposed approach leverages robust and accurate ultra-wideband localization, which reduces the errors from 214 mm without correction to 58 mm with correction. Validation of edge inference using the proposed autoencoder on a NVIDIA Jetson Nano demonstrates significant uplink bandwidth savings and allows up to 20 rapidly ranging anchors per edge GPU.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3012822</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Artificial neural networks ; Autoencoders ; Computer architecture ; Distance measurement ; Edge computing ; Error correction ; Error correction &amp; detection ; Industrial applications ; Inference ; Line of sight ; Machine learning ; Network latency ; Neural networks ; Support vector machines ; Ultra wideband technology ; Ultra-wideband Localization ; Ultrawideband ; Warehouses</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-43d8d98ee4ca2b7a547364a60c9aa8a6aaef4a417bee566ecd5786ec51441a173</citedby><cites>FETCH-LOGICAL-c408t-43d8d98ee4ca2b7a547364a60c9aa8a6aaef4a417bee566ecd5786ec51441a173</cites><orcidid>0000-0002-6857-2019 ; 0000-0001-8900-4881 ; 0000-0001-5942-9440 ; 0000-0002-0214-5751 ; 0000-0003-1943-6261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9151945$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Fontaine, Jaron</creatorcontrib><creatorcontrib>Ridolfi, Matteo</creatorcontrib><creatorcontrib>Van Herbruggen, Ben</creatorcontrib><creatorcontrib>Shahid, Adnan</creatorcontrib><creatorcontrib>De Poorter, Eli</creatorcontrib><title>Edge inference for UWB ranging error correction using autoencoders</title><title>IEEE access</title><addtitle>Access</addtitle><description>Indoor localization knows many applications, such as industry 4.0, warehouses, healthcare, drones, etc., where high accuracy becomes more critical than ever. Recent advances in ultra-wideband localization systems allow high accuracies for multiple active users in line-of-sight environments, while they still introduce errors above 300 mm in non-line-of-sight environments due to multi-path effects. Current work tries to improve the localization accuracy of ultra-wideband through offline error correction approaches using popular machine learning techniques. However, these techniques are still limited to simple environments with few multi-path effects and focus on offline correction. With the upcoming demand for high accuracy and low latency indoor localization systems, there is a need to deploy (online) efficient error correction techniques with fast response times in dynamic and complex environments. To address this, we propose (i) a novel semi-supervised autoencoder-based machine learning approach for improving ranging accuracy of ultra-wideband localization beyond the limitations of current improvements while aiming for performance improvements and a small memory footprint and (ii) an edge inference architecture for online UWB ranging error correction. As such, this paper allows the design of accurate localization systems by using machine learning for low-cost edge devices. Compared to a deep neural network (as state-of-the-art, with a baseline error of 75 mm) the proposed autoencoder achieves a 29% higher accuracy. The proposed approach leverages robust and accurate ultra-wideband localization, which reduces the errors from 214 mm without correction to 58 mm with correction. Validation of edge inference using the proposed autoencoder on a NVIDIA Jetson Nano demonstrates significant uplink bandwidth savings and allows up to 20 rapidly ranging anchors per edge GPU.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Autoencoders</subject><subject>Computer architecture</subject><subject>Distance measurement</subject><subject>Edge computing</subject><subject>Error correction</subject><subject>Error correction &amp; detection</subject><subject>Industrial applications</subject><subject>Inference</subject><subject>Line of sight</subject><subject>Machine learning</subject><subject>Network latency</subject><subject>Neural networks</subject><subject>Support vector machines</subject><subject>Ultra wideband technology</subject><subject>Ultra-wideband Localization</subject><subject>Ultrawideband</subject><subject>Warehouses</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1Lw0AQDaJgqf0FvQQ8p-7sRzY5tqFqoeChFo_LdDMJKTVbN8nBf-_WFHEub3i892Z4UTQHtgBg-dOyKNa73YIzzhaCAc84v4kmHNI8EUqkt__2-2jWdUcWJguU0pNotS5ripu2Ik-tpbhyPt5_rGKPbd20dUzeB8Y678n2jWvjobvQOPQu6F1JvnuI7io8dTS74jTaP6_fi9dk-_ayKZbbxEqW9YkUZVbmGZG0yA8aldQilZgymyNmmCJSJVGCPhCpNCVbKp0FUCAlIGgxjTZjbunwaM6--UT_bRw25pdwvjbo-8aeyFQlB60BgFdClizPUk4VSMa4FpwOFLIex6yzd18Ddb05usG34X3DpZIiF1KKoBKjynrXdZ6qv6vAzKV7M3ZvLt2ba_fBNR9dDRH9OXJQkEslfgAnpn6Z</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Fontaine, Jaron</creator><creator>Ridolfi, Matteo</creator><creator>Van Herbruggen, Ben</creator><creator>Shahid, Adnan</creator><creator>De Poorter, Eli</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6857-2019</orcidid><orcidid>https://orcid.org/0000-0001-8900-4881</orcidid><orcidid>https://orcid.org/0000-0001-5942-9440</orcidid><orcidid>https://orcid.org/0000-0002-0214-5751</orcidid><orcidid>https://orcid.org/0000-0003-1943-6261</orcidid></search><sort><creationdate>20200101</creationdate><title>Edge inference for UWB ranging error correction using autoencoders</title><author>Fontaine, Jaron ; Ridolfi, Matteo ; Van Herbruggen, Ben ; Shahid, Adnan ; De Poorter, Eli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-43d8d98ee4ca2b7a547364a60c9aa8a6aaef4a417bee566ecd5786ec51441a173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Autoencoders</topic><topic>Computer architecture</topic><topic>Distance measurement</topic><topic>Edge computing</topic><topic>Error correction</topic><topic>Error correction &amp; detection</topic><topic>Industrial applications</topic><topic>Inference</topic><topic>Line of sight</topic><topic>Machine learning</topic><topic>Network latency</topic><topic>Neural networks</topic><topic>Support vector machines</topic><topic>Ultra wideband technology</topic><topic>Ultra-wideband Localization</topic><topic>Ultrawideband</topic><topic>Warehouses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fontaine, Jaron</creatorcontrib><creatorcontrib>Ridolfi, Matteo</creatorcontrib><creatorcontrib>Van Herbruggen, Ben</creatorcontrib><creatorcontrib>Shahid, Adnan</creatorcontrib><creatorcontrib>De Poorter, Eli</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fontaine, Jaron</au><au>Ridolfi, Matteo</au><au>Van Herbruggen, Ben</au><au>Shahid, Adnan</au><au>De Poorter, Eli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge inference for UWB ranging error correction using autoencoders</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Indoor localization knows many applications, such as industry 4.0, warehouses, healthcare, drones, etc., where high accuracy becomes more critical than ever. Recent advances in ultra-wideband localization systems allow high accuracies for multiple active users in line-of-sight environments, while they still introduce errors above 300 mm in non-line-of-sight environments due to multi-path effects. Current work tries to improve the localization accuracy of ultra-wideband through offline error correction approaches using popular machine learning techniques. However, these techniques are still limited to simple environments with few multi-path effects and focus on offline correction. With the upcoming demand for high accuracy and low latency indoor localization systems, there is a need to deploy (online) efficient error correction techniques with fast response times in dynamic and complex environments. To address this, we propose (i) a novel semi-supervised autoencoder-based machine learning approach for improving ranging accuracy of ultra-wideband localization beyond the limitations of current improvements while aiming for performance improvements and a small memory footprint and (ii) an edge inference architecture for online UWB ranging error correction. As such, this paper allows the design of accurate localization systems by using machine learning for low-cost edge devices. Compared to a deep neural network (as state-of-the-art, with a baseline error of 75 mm) the proposed autoencoder achieves a 29% higher accuracy. The proposed approach leverages robust and accurate ultra-wideband localization, which reduces the errors from 214 mm without correction to 58 mm with correction. Validation of edge inference using the proposed autoencoder on a NVIDIA Jetson Nano demonstrates significant uplink bandwidth savings and allows up to 20 rapidly ranging anchors per edge GPU.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3012822</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6857-2019</orcidid><orcidid>https://orcid.org/0000-0001-8900-4881</orcidid><orcidid>https://orcid.org/0000-0001-5942-9440</orcidid><orcidid>https://orcid.org/0000-0002-0214-5751</orcidid><orcidid>https://orcid.org/0000-0003-1943-6261</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020-01, Vol.8, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9151945
source IEEE Xplore Open Access Journals
subjects Accuracy
Artificial neural networks
Autoencoders
Computer architecture
Distance measurement
Edge computing
Error correction
Error correction & detection
Industrial applications
Inference
Line of sight
Machine learning
Network latency
Neural networks
Support vector machines
Ultra wideband technology
Ultra-wideband Localization
Ultrawideband
Warehouses
title Edge inference for UWB ranging error correction using autoencoders
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A26%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge%20inference%20for%20UWB%20ranging%20error%20correction%20using%20autoencoders&rft.jtitle=IEEE%20access&rft.au=Fontaine,%20Jaron&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3012822&rft_dat=%3Cproquest_ieee_%3E2454393443%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-43d8d98ee4ca2b7a547364a60c9aa8a6aaef4a417bee566ecd5786ec51441a173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454393443&rft_id=info:pmid/&rft_ieee_id=9151945&rfr_iscdi=true