Loading…
Sparsity-Adaptive Beamspace Channel Estimation for 1-Bit mmWave Massive MIMO Systems
We propose sparsity-adaptive beamspace channel estimation algorithms that improve accuracy for 1-bit data converters in all-digital millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) basestations. Our algorithms include a tuning stage based on Stein's unbiased risk estimate...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose sparsity-adaptive beamspace channel estimation algorithms that improve accuracy for 1-bit data converters in all-digital millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) basestations. Our algorithms include a tuning stage based on Stein's unbiased risk estimate (SURE) that automatically selects optimal denoising parameters depending on the instantaneous channel conditions. Simulation results with line-of-sight (LoS) and non-LoS mmWave massive MIMO channel models show that our algorithms improve channel estimation accuracy with 1-bit measurements in a computationally-efficient manner. |
---|---|
ISSN: | 1948-3252 |
DOI: | 10.1109/SPAWC48557.2020.9154213 |