Loading…
4D Visualization of Dynamic Events From Unconstrained Multi-View Videos
We present a data-driven approach for 4D space-time visualization of dynamic events from videos captured by hand-held multiple cameras. Key to our approach is the use of self-supervised neural networks specific to the scene to compose static and dynamic aspects of an event. Though captured from disc...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a data-driven approach for 4D space-time visualization of dynamic events from videos captured by hand-held multiple cameras. Key to our approach is the use of self-supervised neural networks specific to the scene to compose static and dynamic aspects of an event. Though captured from discrete viewpoints, this model enables us to move around the space-time of the event continuously. This model allows us to create virtual cameras that facilitate: (1) freezing the time and exploring views; (2) freezing a view and moving through time; and (3) simultaneously changing both time and view. We can also edit the videos and reveal occluded objects for a given view if it is visible in any of the other views. We validate our approach on challenging in-the-wild events captured using up to 15 mobile cameras. |
---|---|
ISSN: | 2575-7075 |
DOI: | 10.1109/CVPR42600.2020.00541 |