Loading…
Permutations preserving divisibility
We give a proof of a theorem on the common divisibility of polynomials and permuted polynomials (over GF(2)) by a polynomial g(x).
Saved in:
Published in: | IEEE transactions on information theory 2001-03, Vol.47 (3), p.1206-1207 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c371t-c0f084a6f4e0a48d13a2912ea10843a204c8777b77cafec766b513e3bb240bb03 |
---|---|
cites | cdi_FETCH-LOGICAL-c371t-c0f084a6f4e0a48d13a2912ea10843a204c8777b77cafec766b513e3bb240bb03 |
container_end_page | 1207 |
container_issue | 3 |
container_start_page | 1206 |
container_title | IEEE transactions on information theory |
container_volume | 47 |
creator | McEliece, R.J. Le Dantec, C. Piret, P.M. |
description | We give a proof of a theorem on the common divisibility of polynomials and permuted polynomials (over GF(2)) by a polynomial g(x). |
doi_str_mv | 10.1109/18.915685 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_915685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>915685</ieee_id><sourcerecordid>71380470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-c0f084a6f4e0a48d13a2912ea10843a204c8777b77cafec766b513e3bb240bb03</originalsourceid><addsrcrecordid>eNp90EtLw0AQAOBFFKzVg1dPRUTxkDqT7PNYii8o6EHPyyadyJY0qbtJof_elBQPHjzN62NghrFLhCkimAfUU4NCanHERiiESowU_JiNAFAnhnN9ys5iXPUlF5iO2M07hXXXutY3dZxsAkUKW19_TZZ-66PPfeXb3Tk7KV0V6eIQx-zz6fFj_pIs3p5f57NFUmQK26SAEjR3suQEjuslZi41mJLDvt3nwAutlMqVKlxJhZIyF5hRlucphzyHbMzuhr2b0Hx3FFu79rGgqnI1NV20BrkUoETWy9t_ZaqFkAB7eP0Hrpou1P0VFo0wGQcue3Q_oCI0MQYq7Sb4tQs7i2D3b7Wo7fDW3l4N1hPRrzsMfwDlrnBK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195934046</pqid></control><display><type>article</type><title>Permutations preserving divisibility</title><source>IEEE Electronic Library (IEL) Journals</source><creator>McEliece, R.J. ; Le Dantec, C. ; Piret, P.M.</creator><creatorcontrib>McEliece, R.J. ; Le Dantec, C. ; Piret, P.M.</creatorcontrib><description>We give a proof of a theorem on the common divisibility of polynomials and permuted polynomials (over GF(2)) by a polynomial g(x).</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/18.915685</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cryptography ; Geometry ; Information theory ; Permutations ; Polynomials ; Preserving ; Proving ; Theorems</subject><ispartof>IEEE transactions on information theory, 2001-03, Vol.47 (3), p.1206-1207</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-c0f084a6f4e0a48d13a2912ea10843a204c8777b77cafec766b513e3bb240bb03</citedby><cites>FETCH-LOGICAL-c371t-c0f084a6f4e0a48d13a2912ea10843a204c8777b77cafec766b513e3bb240bb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/915685$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>McEliece, R.J.</creatorcontrib><creatorcontrib>Le Dantec, C.</creatorcontrib><creatorcontrib>Piret, P.M.</creatorcontrib><title>Permutations preserving divisibility</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We give a proof of a theorem on the common divisibility of polynomials and permuted polynomials (over GF(2)) by a polynomial g(x).</description><subject>Cryptography</subject><subject>Geometry</subject><subject>Information theory</subject><subject>Permutations</subject><subject>Polynomials</subject><subject>Preserving</subject><subject>Proving</subject><subject>Theorems</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp90EtLw0AQAOBFFKzVg1dPRUTxkDqT7PNYii8o6EHPyyadyJY0qbtJof_elBQPHjzN62NghrFLhCkimAfUU4NCanHERiiESowU_JiNAFAnhnN9ys5iXPUlF5iO2M07hXXXutY3dZxsAkUKW19_TZZ-66PPfeXb3Tk7KV0V6eIQx-zz6fFj_pIs3p5f57NFUmQK26SAEjR3suQEjuslZi41mJLDvt3nwAutlMqVKlxJhZIyF5hRlucphzyHbMzuhr2b0Hx3FFu79rGgqnI1NV20BrkUoETWy9t_ZaqFkAB7eP0Hrpou1P0VFo0wGQcue3Q_oCI0MQYq7Sb4tQs7i2D3b7Wo7fDW3l4N1hPRrzsMfwDlrnBK</recordid><startdate>20010301</startdate><enddate>20010301</enddate><creator>McEliece, R.J.</creator><creator>Le Dantec, C.</creator><creator>Piret, P.M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20010301</creationdate><title>Permutations preserving divisibility</title><author>McEliece, R.J. ; Le Dantec, C. ; Piret, P.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-c0f084a6f4e0a48d13a2912ea10843a204c8777b77cafec766b513e3bb240bb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Cryptography</topic><topic>Geometry</topic><topic>Information theory</topic><topic>Permutations</topic><topic>Polynomials</topic><topic>Preserving</topic><topic>Proving</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McEliece, R.J.</creatorcontrib><creatorcontrib>Le Dantec, C.</creatorcontrib><creatorcontrib>Piret, P.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McEliece, R.J.</au><au>Le Dantec, C.</au><au>Piret, P.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Permutations preserving divisibility</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2001-03-01</date><risdate>2001</risdate><volume>47</volume><issue>3</issue><spage>1206</spage><epage>1207</epage><pages>1206-1207</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We give a proof of a theorem on the common divisibility of polynomials and permuted polynomials (over GF(2)) by a polynomial g(x).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/18.915685</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2001-03, Vol.47 (3), p.1206-1207 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_ieee_primary_915685 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Cryptography Geometry Information theory Permutations Polynomials Preserving Proving Theorems |
title | Permutations preserving divisibility |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A58%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Permutations%20preserving%20divisibility&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=McEliece,%20R.J.&rft.date=2001-03-01&rft.volume=47&rft.issue=3&rft.spage=1206&rft.epage=1207&rft.pages=1206-1207&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/18.915685&rft_dat=%3Cproquest_ieee_%3E71380470%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-c0f084a6f4e0a48d13a2912ea10843a204c8777b77cafec766b513e3bb240bb03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195934046&rft_id=info:pmid/&rft_ieee_id=915685&rfr_iscdi=true |