Loading…
Autolabeling 3D Objects With Differentiable Rendering of SDF Shape Priors
We present an automatic annotation pipeline to recover 9D cuboids and 3D shapes from pre-trained off-the-shelf 2D detectors and sparse LIDAR data. Our autolabeling method solves an ill-posed inverse problem by considering learned shape priors and optimizing geometric and physical parameters. To addr...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 12230 |
container_issue | |
container_start_page | 12221 |
container_title | |
container_volume | |
creator | Zakharov, Sergey Kehl, Wadim Bhargava, Arjun Gaidon, Adrien |
description | We present an automatic annotation pipeline to recover 9D cuboids and 3D shapes from pre-trained off-the-shelf 2D detectors and sparse LIDAR data. Our autolabeling method solves an ill-posed inverse problem by considering learned shape priors and optimizing geometric and physical parameters. To address this challenging problem, we apply a novel differentiable shape renderer to signed distance fields (SDF), leveraged together with normalized object coordinate spaces (NOCS). Initially trained on synthetic data to predict shape and coordinates, our method uses these predictions for projective and geometric alignment over real samples. Moreover, we also propose a curriculum learning strategy, iteratively retraining on samples of increasing difficulty in subsequent self-improving annotation rounds. Our experiments on the KITTI3D dataset show that we can recover a substantial amount of accurate cuboids, and that these autolabels can be used to train 3D vehicle detectors with state-of-the-art results. |
doi_str_mv | 10.1109/CVPR42600.2020.01224 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9157620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9157620</ieee_id><sourcerecordid>9157620</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-40d54bced1447cdf34d7f774ededb15b4c9647d868519727a43e5a139497414e3</originalsourceid><addsrcrecordid>eNotjs1OwkAUhUcTE4nyBLqYFyjeO3Ont7MkIEpCAgF_lmTauZUhFUhbF769GF2cnM2X8x2l7hFGiOAfJm-rNZkcYGTAwAjQGLpQQ88FsjkH88JdqoFx7DIGdtdq2HV7ALAGMffFQM3HX_2xCaU06fCh7VQvy71UfaffU7_T01TX0sqhT6FsRK_lEKX9BY-13kxnerMLJ9GrNh3b7lZd1aHpZPjfN-p19vgyec4Wy6f5ZLzIkgHbZwTRUVlJRCKuYm0pcs1MEiWW6EqqfE4ci_Nz9Gw4kBUX0HryTEhib9Td324Ske2pTZ-h_d56dJyfBT-ZuUyV</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Autolabeling 3D Objects With Differentiable Rendering of SDF Shape Priors</title><source>IEEE Xplore All Conference Series</source><creator>Zakharov, Sergey ; Kehl, Wadim ; Bhargava, Arjun ; Gaidon, Adrien</creator><creatorcontrib>Zakharov, Sergey ; Kehl, Wadim ; Bhargava, Arjun ; Gaidon, Adrien</creatorcontrib><description>We present an automatic annotation pipeline to recover 9D cuboids and 3D shapes from pre-trained off-the-shelf 2D detectors and sparse LIDAR data. Our autolabeling method solves an ill-posed inverse problem by considering learned shape priors and optimizing geometric and physical parameters. To address this challenging problem, we apply a novel differentiable shape renderer to signed distance fields (SDF), leveraged together with normalized object coordinate spaces (NOCS). Initially trained on synthetic data to predict shape and coordinates, our method uses these predictions for projective and geometric alignment over real samples. Moreover, we also propose a curriculum learning strategy, iteratively retraining on samples of increasing difficulty in subsequent self-improving annotation rounds. Our experiments on the KITTI3D dataset show that we can recover a substantial amount of accurate cuboids, and that these autolabels can be used to train 3D vehicle detectors with state-of-the-art results.</description><identifier>EISSN: 2575-7075</identifier><identifier>EISBN: 9781728171685</identifier><identifier>EISBN: 1728171687</identifier><identifier>DOI: 10.1109/CVPR42600.2020.01224</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cascading style sheets ; Pipelines ; Rendering (computer graphics) ; Shape ; Solid modeling ; Three-dimensional displays ; Two dimensional displays</subject><ispartof>2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, p.12221-12230</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9157620$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9157620$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zakharov, Sergey</creatorcontrib><creatorcontrib>Kehl, Wadim</creatorcontrib><creatorcontrib>Bhargava, Arjun</creatorcontrib><creatorcontrib>Gaidon, Adrien</creatorcontrib><title>Autolabeling 3D Objects With Differentiable Rendering of SDF Shape Priors</title><title>2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)</title><addtitle>CVPR</addtitle><description>We present an automatic annotation pipeline to recover 9D cuboids and 3D shapes from pre-trained off-the-shelf 2D detectors and sparse LIDAR data. Our autolabeling method solves an ill-posed inverse problem by considering learned shape priors and optimizing geometric and physical parameters. To address this challenging problem, we apply a novel differentiable shape renderer to signed distance fields (SDF), leveraged together with normalized object coordinate spaces (NOCS). Initially trained on synthetic data to predict shape and coordinates, our method uses these predictions for projective and geometric alignment over real samples. Moreover, we also propose a curriculum learning strategy, iteratively retraining on samples of increasing difficulty in subsequent self-improving annotation rounds. Our experiments on the KITTI3D dataset show that we can recover a substantial amount of accurate cuboids, and that these autolabels can be used to train 3D vehicle detectors with state-of-the-art results.</description><subject>Cascading style sheets</subject><subject>Pipelines</subject><subject>Rendering (computer graphics)</subject><subject>Shape</subject><subject>Solid modeling</subject><subject>Three-dimensional displays</subject><subject>Two dimensional displays</subject><issn>2575-7075</issn><isbn>9781728171685</isbn><isbn>1728171687</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjs1OwkAUhUcTE4nyBLqYFyjeO3Ont7MkIEpCAgF_lmTauZUhFUhbF769GF2cnM2X8x2l7hFGiOAfJm-rNZkcYGTAwAjQGLpQQ88FsjkH88JdqoFx7DIGdtdq2HV7ALAGMffFQM3HX_2xCaU06fCh7VQvy71UfaffU7_T01TX0sqhT6FsRK_lEKX9BY-13kxnerMLJ9GrNh3b7lZd1aHpZPjfN-p19vgyec4Wy6f5ZLzIkgHbZwTRUVlJRCKuYm0pcs1MEiWW6EqqfE4ci_Nz9Gw4kBUX0HryTEhib9Td324Ske2pTZ-h_d56dJyfBT-ZuUyV</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Zakharov, Sergey</creator><creator>Kehl, Wadim</creator><creator>Bhargava, Arjun</creator><creator>Gaidon, Adrien</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>202006</creationdate><title>Autolabeling 3D Objects With Differentiable Rendering of SDF Shape Priors</title><author>Zakharov, Sergey ; Kehl, Wadim ; Bhargava, Arjun ; Gaidon, Adrien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-40d54bced1447cdf34d7f774ededb15b4c9647d868519727a43e5a139497414e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cascading style sheets</topic><topic>Pipelines</topic><topic>Rendering (computer graphics)</topic><topic>Shape</topic><topic>Solid modeling</topic><topic>Three-dimensional displays</topic><topic>Two dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Zakharov, Sergey</creatorcontrib><creatorcontrib>Kehl, Wadim</creatorcontrib><creatorcontrib>Bhargava, Arjun</creatorcontrib><creatorcontrib>Gaidon, Adrien</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zakharov, Sergey</au><au>Kehl, Wadim</au><au>Bhargava, Arjun</au><au>Gaidon, Adrien</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Autolabeling 3D Objects With Differentiable Rendering of SDF Shape Priors</atitle><btitle>2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)</btitle><stitle>CVPR</stitle><date>2020-06</date><risdate>2020</risdate><spage>12221</spage><epage>12230</epage><pages>12221-12230</pages><eissn>2575-7075</eissn><eisbn>9781728171685</eisbn><eisbn>1728171687</eisbn><coden>IEEPAD</coden><abstract>We present an automatic annotation pipeline to recover 9D cuboids and 3D shapes from pre-trained off-the-shelf 2D detectors and sparse LIDAR data. Our autolabeling method solves an ill-posed inverse problem by considering learned shape priors and optimizing geometric and physical parameters. To address this challenging problem, we apply a novel differentiable shape renderer to signed distance fields (SDF), leveraged together with normalized object coordinate spaces (NOCS). Initially trained on synthetic data to predict shape and coordinates, our method uses these predictions for projective and geometric alignment over real samples. Moreover, we also propose a curriculum learning strategy, iteratively retraining on samples of increasing difficulty in subsequent self-improving annotation rounds. Our experiments on the KITTI3D dataset show that we can recover a substantial amount of accurate cuboids, and that these autolabels can be used to train 3D vehicle detectors with state-of-the-art results.</abstract><pub>IEEE</pub><doi>10.1109/CVPR42600.2020.01224</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2575-7075 |
ispartof | 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, p.12221-12230 |
issn | 2575-7075 |
language | eng |
recordid | cdi_ieee_primary_9157620 |
source | IEEE Xplore All Conference Series |
subjects | Cascading style sheets Pipelines Rendering (computer graphics) Shape Solid modeling Three-dimensional displays Two dimensional displays |
title | Autolabeling 3D Objects With Differentiable Rendering of SDF Shape Priors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A20%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Autolabeling%203D%20Objects%20With%20Differentiable%20Rendering%20of%20SDF%20Shape%20Priors&rft.btitle=2020%20IEEE/CVF%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20(CVPR)&rft.au=Zakharov,%20Sergey&rft.date=2020-06&rft.spage=12221&rft.epage=12230&rft.pages=12221-12230&rft.eissn=2575-7075&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CVPR42600.2020.01224&rft.eisbn=9781728171685&rft.eisbn_list=1728171687&rft_dat=%3Cieee_CHZPO%3E9157620%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-40d54bced1447cdf34d7f774ededb15b4c9647d868519727a43e5a139497414e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9157620&rfr_iscdi=true |