Loading…

Autolabeling 3D Objects With Differentiable Rendering of SDF Shape Priors

We present an automatic annotation pipeline to recover 9D cuboids and 3D shapes from pre-trained off-the-shelf 2D detectors and sparse LIDAR data. Our autolabeling method solves an ill-posed inverse problem by considering learned shape priors and optimizing geometric and physical parameters. To addr...

Full description

Saved in:
Bibliographic Details
Main Authors: Zakharov, Sergey, Kehl, Wadim, Bhargava, Arjun, Gaidon, Adrien
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 12230
container_issue
container_start_page 12221
container_title
container_volume
creator Zakharov, Sergey
Kehl, Wadim
Bhargava, Arjun
Gaidon, Adrien
description We present an automatic annotation pipeline to recover 9D cuboids and 3D shapes from pre-trained off-the-shelf 2D detectors and sparse LIDAR data. Our autolabeling method solves an ill-posed inverse problem by considering learned shape priors and optimizing geometric and physical parameters. To address this challenging problem, we apply a novel differentiable shape renderer to signed distance fields (SDF), leveraged together with normalized object coordinate spaces (NOCS). Initially trained on synthetic data to predict shape and coordinates, our method uses these predictions for projective and geometric alignment over real samples. Moreover, we also propose a curriculum learning strategy, iteratively retraining on samples of increasing difficulty in subsequent self-improving annotation rounds. Our experiments on the KITTI3D dataset show that we can recover a substantial amount of accurate cuboids, and that these autolabels can be used to train 3D vehicle detectors with state-of-the-art results.
doi_str_mv 10.1109/CVPR42600.2020.01224
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9157620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9157620</ieee_id><sourcerecordid>9157620</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-40d54bced1447cdf34d7f774ededb15b4c9647d868519727a43e5a139497414e3</originalsourceid><addsrcrecordid>eNotjs1OwkAUhUcTE4nyBLqYFyjeO3Ont7MkIEpCAgF_lmTauZUhFUhbF769GF2cnM2X8x2l7hFGiOAfJm-rNZkcYGTAwAjQGLpQQ88FsjkH88JdqoFx7DIGdtdq2HV7ALAGMffFQM3HX_2xCaU06fCh7VQvy71UfaffU7_T01TX0sqhT6FsRK_lEKX9BY-13kxnerMLJ9GrNh3b7lZd1aHpZPjfN-p19vgyec4Wy6f5ZLzIkgHbZwTRUVlJRCKuYm0pcs1MEiWW6EqqfE4ci_Nz9Gw4kBUX0HryTEhib9Td324Ske2pTZ-h_d56dJyfBT-ZuUyV</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Autolabeling 3D Objects With Differentiable Rendering of SDF Shape Priors</title><source>IEEE Xplore All Conference Series</source><creator>Zakharov, Sergey ; Kehl, Wadim ; Bhargava, Arjun ; Gaidon, Adrien</creator><creatorcontrib>Zakharov, Sergey ; Kehl, Wadim ; Bhargava, Arjun ; Gaidon, Adrien</creatorcontrib><description>We present an automatic annotation pipeline to recover 9D cuboids and 3D shapes from pre-trained off-the-shelf 2D detectors and sparse LIDAR data. Our autolabeling method solves an ill-posed inverse problem by considering learned shape priors and optimizing geometric and physical parameters. To address this challenging problem, we apply a novel differentiable shape renderer to signed distance fields (SDF), leveraged together with normalized object coordinate spaces (NOCS). Initially trained on synthetic data to predict shape and coordinates, our method uses these predictions for projective and geometric alignment over real samples. Moreover, we also propose a curriculum learning strategy, iteratively retraining on samples of increasing difficulty in subsequent self-improving annotation rounds. Our experiments on the KITTI3D dataset show that we can recover a substantial amount of accurate cuboids, and that these autolabels can be used to train 3D vehicle detectors with state-of-the-art results.</description><identifier>EISSN: 2575-7075</identifier><identifier>EISBN: 9781728171685</identifier><identifier>EISBN: 1728171687</identifier><identifier>DOI: 10.1109/CVPR42600.2020.01224</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cascading style sheets ; Pipelines ; Rendering (computer graphics) ; Shape ; Solid modeling ; Three-dimensional displays ; Two dimensional displays</subject><ispartof>2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, p.12221-12230</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9157620$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9157620$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zakharov, Sergey</creatorcontrib><creatorcontrib>Kehl, Wadim</creatorcontrib><creatorcontrib>Bhargava, Arjun</creatorcontrib><creatorcontrib>Gaidon, Adrien</creatorcontrib><title>Autolabeling 3D Objects With Differentiable Rendering of SDF Shape Priors</title><title>2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)</title><addtitle>CVPR</addtitle><description>We present an automatic annotation pipeline to recover 9D cuboids and 3D shapes from pre-trained off-the-shelf 2D detectors and sparse LIDAR data. Our autolabeling method solves an ill-posed inverse problem by considering learned shape priors and optimizing geometric and physical parameters. To address this challenging problem, we apply a novel differentiable shape renderer to signed distance fields (SDF), leveraged together with normalized object coordinate spaces (NOCS). Initially trained on synthetic data to predict shape and coordinates, our method uses these predictions for projective and geometric alignment over real samples. Moreover, we also propose a curriculum learning strategy, iteratively retraining on samples of increasing difficulty in subsequent self-improving annotation rounds. Our experiments on the KITTI3D dataset show that we can recover a substantial amount of accurate cuboids, and that these autolabels can be used to train 3D vehicle detectors with state-of-the-art results.</description><subject>Cascading style sheets</subject><subject>Pipelines</subject><subject>Rendering (computer graphics)</subject><subject>Shape</subject><subject>Solid modeling</subject><subject>Three-dimensional displays</subject><subject>Two dimensional displays</subject><issn>2575-7075</issn><isbn>9781728171685</isbn><isbn>1728171687</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjs1OwkAUhUcTE4nyBLqYFyjeO3Ont7MkIEpCAgF_lmTauZUhFUhbF769GF2cnM2X8x2l7hFGiOAfJm-rNZkcYGTAwAjQGLpQQ88FsjkH88JdqoFx7DIGdtdq2HV7ALAGMffFQM3HX_2xCaU06fCh7VQvy71UfaffU7_T01TX0sqhT6FsRK_lEKX9BY-13kxnerMLJ9GrNh3b7lZd1aHpZPjfN-p19vgyec4Wy6f5ZLzIkgHbZwTRUVlJRCKuYm0pcs1MEiWW6EqqfE4ci_Nz9Gw4kBUX0HryTEhib9Td324Ske2pTZ-h_d56dJyfBT-ZuUyV</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Zakharov, Sergey</creator><creator>Kehl, Wadim</creator><creator>Bhargava, Arjun</creator><creator>Gaidon, Adrien</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>202006</creationdate><title>Autolabeling 3D Objects With Differentiable Rendering of SDF Shape Priors</title><author>Zakharov, Sergey ; Kehl, Wadim ; Bhargava, Arjun ; Gaidon, Adrien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-40d54bced1447cdf34d7f774ededb15b4c9647d868519727a43e5a139497414e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cascading style sheets</topic><topic>Pipelines</topic><topic>Rendering (computer graphics)</topic><topic>Shape</topic><topic>Solid modeling</topic><topic>Three-dimensional displays</topic><topic>Two dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Zakharov, Sergey</creatorcontrib><creatorcontrib>Kehl, Wadim</creatorcontrib><creatorcontrib>Bhargava, Arjun</creatorcontrib><creatorcontrib>Gaidon, Adrien</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zakharov, Sergey</au><au>Kehl, Wadim</au><au>Bhargava, Arjun</au><au>Gaidon, Adrien</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Autolabeling 3D Objects With Differentiable Rendering of SDF Shape Priors</atitle><btitle>2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)</btitle><stitle>CVPR</stitle><date>2020-06</date><risdate>2020</risdate><spage>12221</spage><epage>12230</epage><pages>12221-12230</pages><eissn>2575-7075</eissn><eisbn>9781728171685</eisbn><eisbn>1728171687</eisbn><coden>IEEPAD</coden><abstract>We present an automatic annotation pipeline to recover 9D cuboids and 3D shapes from pre-trained off-the-shelf 2D detectors and sparse LIDAR data. Our autolabeling method solves an ill-posed inverse problem by considering learned shape priors and optimizing geometric and physical parameters. To address this challenging problem, we apply a novel differentiable shape renderer to signed distance fields (SDF), leveraged together with normalized object coordinate spaces (NOCS). Initially trained on synthetic data to predict shape and coordinates, our method uses these predictions for projective and geometric alignment over real samples. Moreover, we also propose a curriculum learning strategy, iteratively retraining on samples of increasing difficulty in subsequent self-improving annotation rounds. Our experiments on the KITTI3D dataset show that we can recover a substantial amount of accurate cuboids, and that these autolabels can be used to train 3D vehicle detectors with state-of-the-art results.</abstract><pub>IEEE</pub><doi>10.1109/CVPR42600.2020.01224</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2575-7075
ispartof 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, p.12221-12230
issn 2575-7075
language eng
recordid cdi_ieee_primary_9157620
source IEEE Xplore All Conference Series
subjects Cascading style sheets
Pipelines
Rendering (computer graphics)
Shape
Solid modeling
Three-dimensional displays
Two dimensional displays
title Autolabeling 3D Objects With Differentiable Rendering of SDF Shape Priors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A20%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Autolabeling%203D%20Objects%20With%20Differentiable%20Rendering%20of%20SDF%20Shape%20Priors&rft.btitle=2020%20IEEE/CVF%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20(CVPR)&rft.au=Zakharov,%20Sergey&rft.date=2020-06&rft.spage=12221&rft.epage=12230&rft.pages=12221-12230&rft.eissn=2575-7075&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CVPR42600.2020.01224&rft.eisbn=9781728171685&rft.eisbn_list=1728171687&rft_dat=%3Cieee_CHZPO%3E9157620%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-40d54bced1447cdf34d7f774ededb15b4c9647d868519727a43e5a139497414e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9157620&rfr_iscdi=true