Loading…

A new similarity measure for low-sampling cellular fingerprint trajectories

The ability of determining and dealing with the trajectories followed by an object in a given (concrete or abstract) space turns out to be quite useful in a variety of contexts. This is the case, in particular, in positioning, where it can be exploited, for instance, for traffic control and user pro...

Full description

Saved in:
Bibliographic Details
Main Authors: Gallo, Paolo, Gubiani, Donatella, Montanari, Angelo, Saccomanno, Nicola
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 18
container_issue
container_start_page 9
container_title
container_volume
creator Gallo, Paolo
Gubiani, Donatella
Montanari, Angelo
Saccomanno, Nicola
description The ability of determining and dealing with the trajectories followed by an object in a given (concrete or abstract) space turns out to be quite useful in a variety of contexts. This is the case, in particular, in positioning, where it can be exploited, for instance, for traffic control and user profiling. A key step in trajectory management is the evaluation of trajectory similarity. In many positioning applications, trajectories are built from Global Navigation Satellite System (GNSS) readings; however, in various scenarios, these coordinates are not available. In this paper, we focus on fingerprint positioning systems characterised by a low sampling frequency and a high heterogeneity of the observations. We start with a comprehensive analysis of well-known GNSS-based trajectory similarity measures, and show how some of them can actually be adapted to the fingerprinting setting. Then, we outline a novel approach that exploits multiple information, including both spatial and cellular identifiers with received signal strength. Finally, we make an extensive, experimental comparative evaluation of the various measures (adapted and novel ones) over a real-world fingerprint dataset.
doi_str_mv 10.1109/MDM48529.2020.00022
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9162230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9162230</ieee_id><sourcerecordid>9162230</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-cdc32ef49e55c37e6f4f14a45de11a155f6081463028a4ae5fc73562cae97a1b3</originalsourceid><addsrcrecordid>eNotjs1KAzEURqMg2FafoJu8wIw3N38zy1J_Kra40XWJ6Y2kZGZKMqX07a3o6vDB4eMwNhdQCwHtw-ZxoxqNbY2AUAMA4hWbCouNUMZIcc0mKK2uQKK6ZdNS9gDSNGAn7G3BezrxEruYXI7jmXfkyjETD0PmaThVxXWHFPtv7iml40Xi4bIoH3LsRz5mtyc_DjlSuWM3waVC9_-csc_np4_lqlq_v7wuF-sqIsix8jsvkYJqSWsvLZmgglBO6R0J4YTWwcBvuARsnHKkg7dSG_SOWuvEl5yx-d9vJKLtpaNz-bxthUGUIH8A0dZOHQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A new similarity measure for low-sampling cellular fingerprint trajectories</title><source>IEEE Xplore All Conference Series</source><creator>Gallo, Paolo ; Gubiani, Donatella ; Montanari, Angelo ; Saccomanno, Nicola</creator><creatorcontrib>Gallo, Paolo ; Gubiani, Donatella ; Montanari, Angelo ; Saccomanno, Nicola</creatorcontrib><description>The ability of determining and dealing with the trajectories followed by an object in a given (concrete or abstract) space turns out to be quite useful in a variety of contexts. This is the case, in particular, in positioning, where it can be exploited, for instance, for traffic control and user profiling. A key step in trajectory management is the evaluation of trajectory similarity. In many positioning applications, trajectories are built from Global Navigation Satellite System (GNSS) readings; however, in various scenarios, these coordinates are not available. In this paper, we focus on fingerprint positioning systems characterised by a low sampling frequency and a high heterogeneity of the observations. We start with a comprehensive analysis of well-known GNSS-based trajectory similarity measures, and show how some of them can actually be adapted to the fingerprinting setting. Then, we outline a novel approach that exploits multiple information, including both spatial and cellular identifiers with received signal strength. Finally, we make an extensive, experimental comparative evaluation of the various measures (adapted and novel ones) over a real-world fingerprint dataset.</description><identifier>EISSN: 2375-0324</identifier><identifier>EISBN: 1728146631</identifier><identifier>EISBN: 9781728146638</identifier><identifier>DOI: 10.1109/MDM48529.2020.00022</identifier><language>eng</language><publisher>IEEE</publisher><subject>cellular network ; fingerprinting ; Global navigation satellite system ; Global Positioning System ; low-sampling ; outdoor positioning ; Poles and towers ; Position measurement ; Semantics ; similarity measure ; Trajectory</subject><ispartof>2020 21st IEEE International Conference on Mobile Data Management (MDM), 2020, p.9-18</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9162230$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23911,23912,25120,27904,54533,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9162230$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gallo, Paolo</creatorcontrib><creatorcontrib>Gubiani, Donatella</creatorcontrib><creatorcontrib>Montanari, Angelo</creatorcontrib><creatorcontrib>Saccomanno, Nicola</creatorcontrib><title>A new similarity measure for low-sampling cellular fingerprint trajectories</title><title>2020 21st IEEE International Conference on Mobile Data Management (MDM)</title><addtitle>MDM</addtitle><description>The ability of determining and dealing with the trajectories followed by an object in a given (concrete or abstract) space turns out to be quite useful in a variety of contexts. This is the case, in particular, in positioning, where it can be exploited, for instance, for traffic control and user profiling. A key step in trajectory management is the evaluation of trajectory similarity. In many positioning applications, trajectories are built from Global Navigation Satellite System (GNSS) readings; however, in various scenarios, these coordinates are not available. In this paper, we focus on fingerprint positioning systems characterised by a low sampling frequency and a high heterogeneity of the observations. We start with a comprehensive analysis of well-known GNSS-based trajectory similarity measures, and show how some of them can actually be adapted to the fingerprinting setting. Then, we outline a novel approach that exploits multiple information, including both spatial and cellular identifiers with received signal strength. Finally, we make an extensive, experimental comparative evaluation of the various measures (adapted and novel ones) over a real-world fingerprint dataset.</description><subject>cellular network</subject><subject>fingerprinting</subject><subject>Global navigation satellite system</subject><subject>Global Positioning System</subject><subject>low-sampling</subject><subject>outdoor positioning</subject><subject>Poles and towers</subject><subject>Position measurement</subject><subject>Semantics</subject><subject>similarity measure</subject><subject>Trajectory</subject><issn>2375-0324</issn><isbn>1728146631</isbn><isbn>9781728146638</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjs1KAzEURqMg2FafoJu8wIw3N38zy1J_Kra40XWJ6Y2kZGZKMqX07a3o6vDB4eMwNhdQCwHtw-ZxoxqNbY2AUAMA4hWbCouNUMZIcc0mKK2uQKK6ZdNS9gDSNGAn7G3BezrxEruYXI7jmXfkyjETD0PmaThVxXWHFPtv7iml40Xi4bIoH3LsRz5mtyc_DjlSuWM3waVC9_-csc_np4_lqlq_v7wuF-sqIsix8jsvkYJqSWsvLZmgglBO6R0J4YTWwcBvuARsnHKkg7dSG_SOWuvEl5yx-d9vJKLtpaNz-bxthUGUIH8A0dZOHQ</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Gallo, Paolo</creator><creator>Gubiani, Donatella</creator><creator>Montanari, Angelo</creator><creator>Saccomanno, Nicola</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202006</creationdate><title>A new similarity measure for low-sampling cellular fingerprint trajectories</title><author>Gallo, Paolo ; Gubiani, Donatella ; Montanari, Angelo ; Saccomanno, Nicola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-cdc32ef49e55c37e6f4f14a45de11a155f6081463028a4ae5fc73562cae97a1b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>cellular network</topic><topic>fingerprinting</topic><topic>Global navigation satellite system</topic><topic>Global Positioning System</topic><topic>low-sampling</topic><topic>outdoor positioning</topic><topic>Poles and towers</topic><topic>Position measurement</topic><topic>Semantics</topic><topic>similarity measure</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Gallo, Paolo</creatorcontrib><creatorcontrib>Gubiani, Donatella</creatorcontrib><creatorcontrib>Montanari, Angelo</creatorcontrib><creatorcontrib>Saccomanno, Nicola</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gallo, Paolo</au><au>Gubiani, Donatella</au><au>Montanari, Angelo</au><au>Saccomanno, Nicola</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A new similarity measure for low-sampling cellular fingerprint trajectories</atitle><btitle>2020 21st IEEE International Conference on Mobile Data Management (MDM)</btitle><stitle>MDM</stitle><date>2020-06</date><risdate>2020</risdate><spage>9</spage><epage>18</epage><pages>9-18</pages><eissn>2375-0324</eissn><eisbn>1728146631</eisbn><eisbn>9781728146638</eisbn><abstract>The ability of determining and dealing with the trajectories followed by an object in a given (concrete or abstract) space turns out to be quite useful in a variety of contexts. This is the case, in particular, in positioning, where it can be exploited, for instance, for traffic control and user profiling. A key step in trajectory management is the evaluation of trajectory similarity. In many positioning applications, trajectories are built from Global Navigation Satellite System (GNSS) readings; however, in various scenarios, these coordinates are not available. In this paper, we focus on fingerprint positioning systems characterised by a low sampling frequency and a high heterogeneity of the observations. We start with a comprehensive analysis of well-known GNSS-based trajectory similarity measures, and show how some of them can actually be adapted to the fingerprinting setting. Then, we outline a novel approach that exploits multiple information, including both spatial and cellular identifiers with received signal strength. Finally, we make an extensive, experimental comparative evaluation of the various measures (adapted and novel ones) over a real-world fingerprint dataset.</abstract><pub>IEEE</pub><doi>10.1109/MDM48529.2020.00022</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2375-0324
ispartof 2020 21st IEEE International Conference on Mobile Data Management (MDM), 2020, p.9-18
issn 2375-0324
language eng
recordid cdi_ieee_primary_9162230
source IEEE Xplore All Conference Series
subjects cellular network
fingerprinting
Global navigation satellite system
Global Positioning System
low-sampling
outdoor positioning
Poles and towers
Position measurement
Semantics
similarity measure
Trajectory
title A new similarity measure for low-sampling cellular fingerprint trajectories
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A04%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20new%20similarity%20measure%20for%20low-sampling%20cellular%20fingerprint%20trajectories&rft.btitle=2020%2021st%20IEEE%20International%20Conference%20on%20Mobile%20Data%20Management%20(MDM)&rft.au=Gallo,%20Paolo&rft.date=2020-06&rft.spage=9&rft.epage=18&rft.pages=9-18&rft.eissn=2375-0324&rft_id=info:doi/10.1109/MDM48529.2020.00022&rft.eisbn=1728146631&rft.eisbn_list=9781728146638&rft_dat=%3Cieee_CHZPO%3E9162230%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-cdc32ef49e55c37e6f4f14a45de11a155f6081463028a4ae5fc73562cae97a1b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9162230&rfr_iscdi=true