Loading…

Arbitrarily-Oriented Text Detection in Low Light Natural Scene Images

Text detection in low light natural scene images is challenging due to poor image quality and low contrast. Unlike most existing methods that focus on well-lit (normally daylight) images, the proposed method considers much darker natural scene images. For this task, our method first integrates spati...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on multimedia 2021, Vol.23, p.2706-2720
Main Authors: Xue, Minglong, Shivakumara, Palaiahnakote, Zhang, Chao, Xiao, Yao, Lu, Tong, Pal, Umapada, Lopresti, Daniel, Yang, Zhibo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-a23d2ed028dc829729b8cf183caac23fde53356d630fe98992899447fbc320d03
cites cdi_FETCH-LOGICAL-c291t-a23d2ed028dc829729b8cf183caac23fde53356d630fe98992899447fbc320d03
container_end_page 2720
container_issue
container_start_page 2706
container_title IEEE transactions on multimedia
container_volume 23
creator Xue, Minglong
Shivakumara, Palaiahnakote
Zhang, Chao
Xiao, Yao
Lu, Tong
Pal, Umapada
Lopresti, Daniel
Yang, Zhibo
description Text detection in low light natural scene images is challenging due to poor image quality and low contrast. Unlike most existing methods that focus on well-lit (normally daylight) images, the proposed method considers much darker natural scene images. For this task, our method first integrates spatial and frequency domain features through fusion to enhance fine details in the image. Next, we use Maximally Stable Extremal Regions (MSER) for detecting text candidates from the enhanced images. We then introduce Cloud of Line Distribution (COLD) features, which capture the distribution of pixels of text candidates in the polar domain. The extracted features are sent to a Convolution Neural Network (CNN) to correct the bounding boxes for arbitrarily oriented text lines by removing false positives. Experiments are conducted on a dataset of low light images to evaluate the proposed enhancement step. The results show our approach is more effective compared to existing methods in terms of standard quality measures, namely, BRISQE, NIQE and PIQE. In addition, experimental results on a variety of standard benchmark datasets, namely, ICDAR 2013, ICDAR 2015, SVT, Total-Text, ICDAR 2017-MLT and CTW1500, show that the proposed approach not only produces better results for low light images, at the same time it is also competitive for daylight images.
doi_str_mv 10.1109/TMM.2020.3015037
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9162503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9162503</ieee_id><sourcerecordid>2564215276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-a23d2ed028dc829729b8cf183caac23fde53356d630fe98992899447fbc320d03</originalsourceid><addsrcrecordid>eNo9kM1PAjEQxRujiYjeTbw08bw4ne5XjwRRSUAO4rkp3VksgV3slij_vSUQD5OZZN6bl_kxdi9gIASop8VsNkBAGEgQGcjigvWESkUCUBSXcc4QEoUCrtlN160BRJpB0WPjoV-64I13m0My946aQBVf0G_gzxTIBtc23DV82v7wqVt9Bf5uwt6bDf-w1BCfbM2Kult2VZtNR3fn3mefL-PF6C2Zzl8no-E0sahESAzKCqkCLCtboipQLUtbi1JaYyzKuqJMyiyvcgk1qVIpjJWmRb20EqEC2WePp7s7337vqQt63e59EyM1ZnmK8csijyo4qaxvu85TrXfebY0_aAH6CEtHWPoIS59hRcvDyeKI6F-uRI5xLf8AZvZj8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564215276</pqid></control><display><type>article</type><title>Arbitrarily-Oriented Text Detection in Low Light Natural Scene Images</title><source>IEEE Xplore (Online service)</source><creator>Xue, Minglong ; Shivakumara, Palaiahnakote ; Zhang, Chao ; Xiao, Yao ; Lu, Tong ; Pal, Umapada ; Lopresti, Daniel ; Yang, Zhibo</creator><creatorcontrib>Xue, Minglong ; Shivakumara, Palaiahnakote ; Zhang, Chao ; Xiao, Yao ; Lu, Tong ; Pal, Umapada ; Lopresti, Daniel ; Yang, Zhibo</creatorcontrib><description>Text detection in low light natural scene images is challenging due to poor image quality and low contrast. Unlike most existing methods that focus on well-lit (normally daylight) images, the proposed method considers much darker natural scene images. For this task, our method first integrates spatial and frequency domain features through fusion to enhance fine details in the image. Next, we use Maximally Stable Extremal Regions (MSER) for detecting text candidates from the enhanced images. We then introduce Cloud of Line Distribution (COLD) features, which capture the distribution of pixels of text candidates in the polar domain. The extracted features are sent to a Convolution Neural Network (CNN) to correct the bounding boxes for arbitrarily oriented text lines by removing false positives. Experiments are conducted on a dataset of low light images to evaluate the proposed enhancement step. The results show our approach is more effective compared to existing methods in terms of standard quality measures, namely, BRISQE, NIQE and PIQE. In addition, experimental results on a variety of standard benchmark datasets, namely, ICDAR 2013, ICDAR 2015, SVT, Total-Text, ICDAR 2017-MLT and CTW1500, show that the proposed approach not only produces better results for low light images, at the same time it is also competitive for daylight images.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2020.3015037</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>arbitrarily-oriented text detection ; Artificial neural networks ; COLD features ; convolutional neural network ; Convolutional neural networks ; Datasets ; Daylight ; Feature extraction ; gaussian pyramid filter ; Homomorphic filter ; Image contrast ; Image enhancement ; Image quality ; Image segmentation ; Licenses ; Machine learning ; Proposals</subject><ispartof>IEEE transactions on multimedia, 2021, Vol.23, p.2706-2720</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-a23d2ed028dc829729b8cf183caac23fde53356d630fe98992899447fbc320d03</citedby><cites>FETCH-LOGICAL-c291t-a23d2ed028dc829729b8cf183caac23fde53356d630fe98992899447fbc320d03</cites><orcidid>0000-0002-7051-5347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9162503$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Xue, Minglong</creatorcontrib><creatorcontrib>Shivakumara, Palaiahnakote</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Xiao, Yao</creatorcontrib><creatorcontrib>Lu, Tong</creatorcontrib><creatorcontrib>Pal, Umapada</creatorcontrib><creatorcontrib>Lopresti, Daniel</creatorcontrib><creatorcontrib>Yang, Zhibo</creatorcontrib><title>Arbitrarily-Oriented Text Detection in Low Light Natural Scene Images</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>Text detection in low light natural scene images is challenging due to poor image quality and low contrast. Unlike most existing methods that focus on well-lit (normally daylight) images, the proposed method considers much darker natural scene images. For this task, our method first integrates spatial and frequency domain features through fusion to enhance fine details in the image. Next, we use Maximally Stable Extremal Regions (MSER) for detecting text candidates from the enhanced images. We then introduce Cloud of Line Distribution (COLD) features, which capture the distribution of pixels of text candidates in the polar domain. The extracted features are sent to a Convolution Neural Network (CNN) to correct the bounding boxes for arbitrarily oriented text lines by removing false positives. Experiments are conducted on a dataset of low light images to evaluate the proposed enhancement step. The results show our approach is more effective compared to existing methods in terms of standard quality measures, namely, BRISQE, NIQE and PIQE. In addition, experimental results on a variety of standard benchmark datasets, namely, ICDAR 2013, ICDAR 2015, SVT, Total-Text, ICDAR 2017-MLT and CTW1500, show that the proposed approach not only produces better results for low light images, at the same time it is also competitive for daylight images.</description><subject>arbitrarily-oriented text detection</subject><subject>Artificial neural networks</subject><subject>COLD features</subject><subject>convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Datasets</subject><subject>Daylight</subject><subject>Feature extraction</subject><subject>gaussian pyramid filter</subject><subject>Homomorphic filter</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>Image segmentation</subject><subject>Licenses</subject><subject>Machine learning</subject><subject>Proposals</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM1PAjEQxRujiYjeTbw08bw4ne5XjwRRSUAO4rkp3VksgV3slij_vSUQD5OZZN6bl_kxdi9gIASop8VsNkBAGEgQGcjigvWESkUCUBSXcc4QEoUCrtlN160BRJpB0WPjoV-64I13m0My946aQBVf0G_gzxTIBtc23DV82v7wqVt9Bf5uwt6bDf-w1BCfbM2Kult2VZtNR3fn3mefL-PF6C2Zzl8no-E0sahESAzKCqkCLCtboipQLUtbi1JaYyzKuqJMyiyvcgk1qVIpjJWmRb20EqEC2WePp7s7337vqQt63e59EyM1ZnmK8csijyo4qaxvu85TrXfebY0_aAH6CEtHWPoIS59hRcvDyeKI6F-uRI5xLf8AZvZj8g</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Xue, Minglong</creator><creator>Shivakumara, Palaiahnakote</creator><creator>Zhang, Chao</creator><creator>Xiao, Yao</creator><creator>Lu, Tong</creator><creator>Pal, Umapada</creator><creator>Lopresti, Daniel</creator><creator>Yang, Zhibo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7051-5347</orcidid></search><sort><creationdate>2021</creationdate><title>Arbitrarily-Oriented Text Detection in Low Light Natural Scene Images</title><author>Xue, Minglong ; Shivakumara, Palaiahnakote ; Zhang, Chao ; Xiao, Yao ; Lu, Tong ; Pal, Umapada ; Lopresti, Daniel ; Yang, Zhibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-a23d2ed028dc829729b8cf183caac23fde53356d630fe98992899447fbc320d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>arbitrarily-oriented text detection</topic><topic>Artificial neural networks</topic><topic>COLD features</topic><topic>convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Datasets</topic><topic>Daylight</topic><topic>Feature extraction</topic><topic>gaussian pyramid filter</topic><topic>Homomorphic filter</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>Image segmentation</topic><topic>Licenses</topic><topic>Machine learning</topic><topic>Proposals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Minglong</creatorcontrib><creatorcontrib>Shivakumara, Palaiahnakote</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Xiao, Yao</creatorcontrib><creatorcontrib>Lu, Tong</creatorcontrib><creatorcontrib>Pal, Umapada</creatorcontrib><creatorcontrib>Lopresti, Daniel</creatorcontrib><creatorcontrib>Yang, Zhibo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Minglong</au><au>Shivakumara, Palaiahnakote</au><au>Zhang, Chao</au><au>Xiao, Yao</au><au>Lu, Tong</au><au>Pal, Umapada</au><au>Lopresti, Daniel</au><au>Yang, Zhibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arbitrarily-Oriented Text Detection in Low Light Natural Scene Images</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2021</date><risdate>2021</risdate><volume>23</volume><spage>2706</spage><epage>2720</epage><pages>2706-2720</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>Text detection in low light natural scene images is challenging due to poor image quality and low contrast. Unlike most existing methods that focus on well-lit (normally daylight) images, the proposed method considers much darker natural scene images. For this task, our method first integrates spatial and frequency domain features through fusion to enhance fine details in the image. Next, we use Maximally Stable Extremal Regions (MSER) for detecting text candidates from the enhanced images. We then introduce Cloud of Line Distribution (COLD) features, which capture the distribution of pixels of text candidates in the polar domain. The extracted features are sent to a Convolution Neural Network (CNN) to correct the bounding boxes for arbitrarily oriented text lines by removing false positives. Experiments are conducted on a dataset of low light images to evaluate the proposed enhancement step. The results show our approach is more effective compared to existing methods in terms of standard quality measures, namely, BRISQE, NIQE and PIQE. In addition, experimental results on a variety of standard benchmark datasets, namely, ICDAR 2013, ICDAR 2015, SVT, Total-Text, ICDAR 2017-MLT and CTW1500, show that the proposed approach not only produces better results for low light images, at the same time it is also competitive for daylight images.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2020.3015037</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7051-5347</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2021, Vol.23, p.2706-2720
issn 1520-9210
1941-0077
language eng
recordid cdi_ieee_primary_9162503
source IEEE Xplore (Online service)
subjects arbitrarily-oriented text detection
Artificial neural networks
COLD features
convolutional neural network
Convolutional neural networks
Datasets
Daylight
Feature extraction
gaussian pyramid filter
Homomorphic filter
Image contrast
Image enhancement
Image quality
Image segmentation
Licenses
Machine learning
Proposals
title Arbitrarily-Oriented Text Detection in Low Light Natural Scene Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A33%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arbitrarily-Oriented%20Text%20Detection%20in%20Low%20Light%20Natural%20Scene%20Images&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Xue,%20Minglong&rft.date=2021&rft.volume=23&rft.spage=2706&rft.epage=2720&rft.pages=2706-2720&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2020.3015037&rft_dat=%3Cproquest_ieee_%3E2564215276%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-a23d2ed028dc829729b8cf183caac23fde53356d630fe98992899447fbc320d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2564215276&rft_id=info:pmid/&rft_ieee_id=9162503&rfr_iscdi=true