Loading…
SamurAI: A 1.7MOPS-36GOPS Adaptive Versatile IoT Node with 15,000× Peak-to-Idle Power Reduction, 207ns Wake-Up Time and 1.3TOPS/W ML Efficiency
IoT node application requirements are torn between sporadic data-logging and energy-hungry data processing (e.g. image classification). This paper presents a versatile IoT node covering this gap in processing and energy by leveraging two on-chip sub-systems: a low power, clock-less, event-driven Alw...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | IoT node application requirements are torn between sporadic data-logging and energy-hungry data processing (e.g. image classification). This paper presents a versatile IoT node covering this gap in processing and energy by leveraging two on-chip sub-systems: a low power, clock-less, event-driven Always-Responsive (AR) part and an energy-efficient On-Demand (OD) part. The AR contains a 1.7MOPS event-driven, asynchronous Wake-up Controller (WuC) with 207ns wake-up time optimized for short sporadic computing. OD combines a deep-sleep RISC-V CPU and 1.3TOPS/W Machine Learning (ML) and crypto accelerators for more complex tasks. The node can perform up to 36GOPS while achieving 15,000× reduction from peak-to-idle power consumption. The interest of this versatile architecture is demonstrated with 105μW daily average power on an applicative classification scenario. |
---|---|
ISSN: | 2158-5636 |
DOI: | 10.1109/VLSICircuits18222.2020.9163000 |