Loading…
New stability conditions of delayed neural networks via improved Lyapunov-Krasovskii functionals
This paper studies the delay-dependent stability problems of neural networks with time-delays. Firstly, in order to make the constructed function contain more useful information, this paper introduces three types of Lyapunov-Krasovskii functional terms to construct an improved Lyapunov-Krasovskii fu...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3841 |
container_issue | |
container_start_page | 3836 |
container_title | |
container_volume | |
creator | Lin, Huichao Zeng, Hongbing |
description | This paper studies the delay-dependent stability problems of neural networks with time-delays. Firstly, in order to make the constructed function contain more useful information, this paper introduces three types of Lyapunov-Krasovskii functional terms to construct an improved Lyapunov-Krasovskii functional. Then, based on the improved Lyapunov-Krasovskii functional and reciprocal convex integral inequalities, some less conservative stability criteria are derived for the considered neural networks. Finally, a well-known numerical example is provided to demonstrate the superiority of the proposed stability criteria. |
doi_str_mv | 10.1109/CCDC49329.2020.9164180 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9164180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9164180</ieee_id><sourcerecordid>9164180</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-636f484cc980abaa0bda73b361f4ba972b9217d1759fba9127e7d431f792045b3</originalsourceid><addsrcrecordid>eNotkMtKxDAYRqMgOI7zBILkBVrzJ2kuS6lXLLrR9Zi0CcTpNKXpdOjbW3FWh8MHZ_EhdAskByD6riwfSq4Z1TkllOQaBAdFztBGSwWSKihUUYhztALNVaY5l5foKqUfQoRghKzQ97s74jQaG9owzriOXRPGELuEo8eNa83sGty5w2DaBeMxDruEp2Bw2PdDnJaxmk1_6OKUvQ0mxSntQsD-0NV_FdOma3ThF7jNiWv09fT4Wb5k1cfza3lfZYESNmaCCc8Vr2utiLHGENsYySwT4Lk1WlKrKcgGZKH94kClkw1n4KWmhBeWrdHNfzc457b9EPZmmLenQ9gvj4NXfg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>New stability conditions of delayed neural networks via improved Lyapunov-Krasovskii functionals</title><source>IEEE Xplore All Conference Series</source><creator>Lin, Huichao ; Zeng, Hongbing</creator><creatorcontrib>Lin, Huichao ; Zeng, Hongbing</creatorcontrib><description>This paper studies the delay-dependent stability problems of neural networks with time-delays. Firstly, in order to make the constructed function contain more useful information, this paper introduces three types of Lyapunov-Krasovskii functional terms to construct an improved Lyapunov-Krasovskii functional. Then, based on the improved Lyapunov-Krasovskii functional and reciprocal convex integral inequalities, some less conservative stability criteria are derived for the considered neural networks. Finally, a well-known numerical example is provided to demonstrate the superiority of the proposed stability criteria.</description><identifier>EISSN: 1948-9447</identifier><identifier>EISBN: 9781728158556</identifier><identifier>EISBN: 1728158540</identifier><identifier>EISBN: 1728158559</identifier><identifier>EISBN: 9781728158549</identifier><identifier>DOI: 10.1109/CCDC49329.2020.9164180</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological neural networks ; Delays ; Lyapunov-Krasovskii functional ; Neural networks ; Neurons ; Numerical stability ; Stability analysis ; Stability criteria ; Symmetric matrices ; Time-varying delay</subject><ispartof>2020 Chinese Control And Decision Conference (CCDC), 2020, p.3836-3841</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9164180$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27904,54533,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9164180$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lin, Huichao</creatorcontrib><creatorcontrib>Zeng, Hongbing</creatorcontrib><title>New stability conditions of delayed neural networks via improved Lyapunov-Krasovskii functionals</title><title>2020 Chinese Control And Decision Conference (CCDC)</title><addtitle>CCDC</addtitle><description>This paper studies the delay-dependent stability problems of neural networks with time-delays. Firstly, in order to make the constructed function contain more useful information, this paper introduces three types of Lyapunov-Krasovskii functional terms to construct an improved Lyapunov-Krasovskii functional. Then, based on the improved Lyapunov-Krasovskii functional and reciprocal convex integral inequalities, some less conservative stability criteria are derived for the considered neural networks. Finally, a well-known numerical example is provided to demonstrate the superiority of the proposed stability criteria.</description><subject>Biological neural networks</subject><subject>Delays</subject><subject>Lyapunov-Krasovskii functional</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Numerical stability</subject><subject>Stability analysis</subject><subject>Stability criteria</subject><subject>Symmetric matrices</subject><subject>Time-varying delay</subject><issn>1948-9447</issn><isbn>9781728158556</isbn><isbn>1728158540</isbn><isbn>1728158559</isbn><isbn>9781728158549</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtKxDAYRqMgOI7zBILkBVrzJ2kuS6lXLLrR9Zi0CcTpNKXpdOjbW3FWh8MHZ_EhdAskByD6riwfSq4Z1TkllOQaBAdFztBGSwWSKihUUYhztALNVaY5l5foKqUfQoRghKzQ97s74jQaG9owzriOXRPGELuEo8eNa83sGty5w2DaBeMxDruEp2Bw2PdDnJaxmk1_6OKUvQ0mxSntQsD-0NV_FdOma3ThF7jNiWv09fT4Wb5k1cfza3lfZYESNmaCCc8Vr2utiLHGENsYySwT4Lk1WlKrKcgGZKH94kClkw1n4KWmhBeWrdHNfzc457b9EPZmmLenQ9gvj4NXfg</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Lin, Huichao</creator><creator>Zeng, Hongbing</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202008</creationdate><title>New stability conditions of delayed neural networks via improved Lyapunov-Krasovskii functionals</title><author>Lin, Huichao ; Zeng, Hongbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-636f484cc980abaa0bda73b361f4ba972b9217d1759fba9127e7d431f792045b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological neural networks</topic><topic>Delays</topic><topic>Lyapunov-Krasovskii functional</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Numerical stability</topic><topic>Stability analysis</topic><topic>Stability criteria</topic><topic>Symmetric matrices</topic><topic>Time-varying delay</topic><toplevel>online_resources</toplevel><creatorcontrib>Lin, Huichao</creatorcontrib><creatorcontrib>Zeng, Hongbing</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, Huichao</au><au>Zeng, Hongbing</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>New stability conditions of delayed neural networks via improved Lyapunov-Krasovskii functionals</atitle><btitle>2020 Chinese Control And Decision Conference (CCDC)</btitle><stitle>CCDC</stitle><date>2020-08</date><risdate>2020</risdate><spage>3836</spage><epage>3841</epage><pages>3836-3841</pages><eissn>1948-9447</eissn><eisbn>9781728158556</eisbn><eisbn>1728158540</eisbn><eisbn>1728158559</eisbn><eisbn>9781728158549</eisbn><abstract>This paper studies the delay-dependent stability problems of neural networks with time-delays. Firstly, in order to make the constructed function contain more useful information, this paper introduces three types of Lyapunov-Krasovskii functional terms to construct an improved Lyapunov-Krasovskii functional. Then, based on the improved Lyapunov-Krasovskii functional and reciprocal convex integral inequalities, some less conservative stability criteria are derived for the considered neural networks. Finally, a well-known numerical example is provided to demonstrate the superiority of the proposed stability criteria.</abstract><pub>IEEE</pub><doi>10.1109/CCDC49329.2020.9164180</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 1948-9447 |
ispartof | 2020 Chinese Control And Decision Conference (CCDC), 2020, p.3836-3841 |
issn | 1948-9447 |
language | eng |
recordid | cdi_ieee_primary_9164180 |
source | IEEE Xplore All Conference Series |
subjects | Biological neural networks Delays Lyapunov-Krasovskii functional Neural networks Neurons Numerical stability Stability analysis Stability criteria Symmetric matrices Time-varying delay |
title | New stability conditions of delayed neural networks via improved Lyapunov-Krasovskii functionals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A25%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=New%20stability%20conditions%20of%20delayed%20neural%20networks%20via%20improved%20Lyapunov-Krasovskii%20functionals&rft.btitle=2020%20Chinese%20Control%20And%20Decision%20Conference%20(CCDC)&rft.au=Lin,%20Huichao&rft.date=2020-08&rft.spage=3836&rft.epage=3841&rft.pages=3836-3841&rft.eissn=1948-9447&rft_id=info:doi/10.1109/CCDC49329.2020.9164180&rft.eisbn=9781728158556&rft.eisbn_list=1728158540&rft.eisbn_list=1728158559&rft.eisbn_list=9781728158549&rft_dat=%3Cieee_CHZPO%3E9164180%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-636f484cc980abaa0bda73b361f4ba972b9217d1759fba9127e7d431f792045b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9164180&rfr_iscdi=true |