Loading…

Image restoration method based on GAN and multi-scale feature fusion

In the research of existing image restore algorithms, defective images and target images exist in pairs, which leads to poor applicability of the algorithm. Aiming at the shortcomings of the existing algorithms, such as low accuracy and poor visual consistency, an image restoration method based on G...

Full description

Saved in:
Bibliographic Details
Main Authors: Jin, Xin, Hu, Ying, Zhang, Chu-Yue
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2310
container_issue
container_start_page 2305
container_title
container_volume
creator Jin, Xin
Hu, Ying
Zhang, Chu-Yue
description In the research of existing image restore algorithms, defective images and target images exist in pairs, which leads to poor applicability of the algorithm. Aiming at the shortcomings of the existing algorithms, such as low accuracy and poor visual consistency, an image restoration method based on GAN and multi-scale feature fusion was proposed. The generator of this algorithm uses a standard encoder-decoder structure. The encoder based on the VGG-16 full convolutional neural network is used to extract the features of the defect image. Low-dimensional features and high Dimensional features are fused to enrich the input of deep convolutions. Aiming at the problems of large error oscillation amplitude, gradient disappearance or gradient explosion in GAN training, the idea of WGAN is used, and the EM distance is used to simulate the sample data distribution. The similarity between the output restored image and the target image is enhanced by introducing L1 loss. This paper performs experiments on the same face data set. The experimental results show that the algorithm improves the accuracy of the restored image and can generate more realistic restored images.
doi_str_mv 10.1109/CCDC49329.2020.9164498
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9164498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9164498</ieee_id><sourcerecordid>9164498</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-bd579a4cfee9045ebd4e0744ad6a9f985c8e6757d1559148da716002960099703</originalsourceid><addsrcrecordid>eNotj81Kw0AUhUdBsNY-gSDzAql3Jnd-7rKk2haKbnRdJpkbjSSNZJKFb2_Abs7HWXwHjhCPCtZKAT0VxbZAyjWtNWhYk7KI5K_EipxXTntlvDH2WiwUoc8I0d2Ku5S-AazNARZie-jCJ8uB09gPYWz6s-x4_OqjLEPiKOe-27zKcI6ym9qxyVIVWpY1h3EaZk5pVu7FTR3axKsLl-Lj5fm92GfHt92h2ByzRkM-ZmU0jgJWNTMBGi4jMjjEEG2gmrypPFtnXFTGkEIfg1MWQNMcRA7ypXj4322Y-fQzNF0Yfk-X0_kfBkJK5w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Image restoration method based on GAN and multi-scale feature fusion</title><source>IEEE Xplore All Conference Series</source><creator>Jin, Xin ; Hu, Ying ; Zhang, Chu-Yue</creator><creatorcontrib>Jin, Xin ; Hu, Ying ; Zhang, Chu-Yue</creatorcontrib><description>In the research of existing image restore algorithms, defective images and target images exist in pairs, which leads to poor applicability of the algorithm. Aiming at the shortcomings of the existing algorithms, such as low accuracy and poor visual consistency, an image restoration method based on GAN and multi-scale feature fusion was proposed. The generator of this algorithm uses a standard encoder-decoder structure. The encoder based on the VGG-16 full convolutional neural network is used to extract the features of the defect image. Low-dimensional features and high Dimensional features are fused to enrich the input of deep convolutions. Aiming at the problems of large error oscillation amplitude, gradient disappearance or gradient explosion in GAN training, the idea of WGAN is used, and the EM distance is used to simulate the sample data distribution. The similarity between the output restored image and the target image is enhanced by introducing L1 loss. This paper performs experiments on the same face data set. The experimental results show that the algorithm improves the accuracy of the restored image and can generate more realistic restored images.</description><identifier>EISSN: 1948-9447</identifier><identifier>EISBN: 9781728158556</identifier><identifier>EISBN: 1728158540</identifier><identifier>EISBN: 1728158559</identifier><identifier>EISBN: 9781728158549</identifier><identifier>DOI: 10.1109/CCDC49329.2020.9164498</identifier><language>eng</language><publisher>IEEE</publisher><subject>Decoding ; Feature extraction ; Feature fusion ; Fully convolutional neural network ; Gallium nitride ; GAN ; Generative adversarial networks ; Generators ; Image restoration ; Training ; VGG-16 ; WGAN</subject><ispartof>2020 Chinese Control And Decision Conference (CCDC), 2020, p.2305-2310</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9164498$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9164498$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jin, Xin</creatorcontrib><creatorcontrib>Hu, Ying</creatorcontrib><creatorcontrib>Zhang, Chu-Yue</creatorcontrib><title>Image restoration method based on GAN and multi-scale feature fusion</title><title>2020 Chinese Control And Decision Conference (CCDC)</title><addtitle>CCDC</addtitle><description>In the research of existing image restore algorithms, defective images and target images exist in pairs, which leads to poor applicability of the algorithm. Aiming at the shortcomings of the existing algorithms, such as low accuracy and poor visual consistency, an image restoration method based on GAN and multi-scale feature fusion was proposed. The generator of this algorithm uses a standard encoder-decoder structure. The encoder based on the VGG-16 full convolutional neural network is used to extract the features of the defect image. Low-dimensional features and high Dimensional features are fused to enrich the input of deep convolutions. Aiming at the problems of large error oscillation amplitude, gradient disappearance or gradient explosion in GAN training, the idea of WGAN is used, and the EM distance is used to simulate the sample data distribution. The similarity between the output restored image and the target image is enhanced by introducing L1 loss. This paper performs experiments on the same face data set. The experimental results show that the algorithm improves the accuracy of the restored image and can generate more realistic restored images.</description><subject>Decoding</subject><subject>Feature extraction</subject><subject>Feature fusion</subject><subject>Fully convolutional neural network</subject><subject>Gallium nitride</subject><subject>GAN</subject><subject>Generative adversarial networks</subject><subject>Generators</subject><subject>Image restoration</subject><subject>Training</subject><subject>VGG-16</subject><subject>WGAN</subject><issn>1948-9447</issn><isbn>9781728158556</isbn><isbn>1728158540</isbn><isbn>1728158559</isbn><isbn>9781728158549</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81Kw0AUhUdBsNY-gSDzAql3Jnd-7rKk2haKbnRdJpkbjSSNZJKFb2_Abs7HWXwHjhCPCtZKAT0VxbZAyjWtNWhYk7KI5K_EipxXTntlvDH2WiwUoc8I0d2Ku5S-AazNARZie-jCJ8uB09gPYWz6s-x4_OqjLEPiKOe-27zKcI6ym9qxyVIVWpY1h3EaZk5pVu7FTR3axKsLl-Lj5fm92GfHt92h2ByzRkM-ZmU0jgJWNTMBGi4jMjjEEG2gmrypPFtnXFTGkEIfg1MWQNMcRA7ypXj4322Y-fQzNF0Yfk-X0_kfBkJK5w</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Jin, Xin</creator><creator>Hu, Ying</creator><creator>Zhang, Chu-Yue</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202008</creationdate><title>Image restoration method based on GAN and multi-scale feature fusion</title><author>Jin, Xin ; Hu, Ying ; Zhang, Chu-Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-bd579a4cfee9045ebd4e0744ad6a9f985c8e6757d1559148da716002960099703</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Decoding</topic><topic>Feature extraction</topic><topic>Feature fusion</topic><topic>Fully convolutional neural network</topic><topic>Gallium nitride</topic><topic>GAN</topic><topic>Generative adversarial networks</topic><topic>Generators</topic><topic>Image restoration</topic><topic>Training</topic><topic>VGG-16</topic><topic>WGAN</topic><toplevel>online_resources</toplevel><creatorcontrib>Jin, Xin</creatorcontrib><creatorcontrib>Hu, Ying</creatorcontrib><creatorcontrib>Zhang, Chu-Yue</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jin, Xin</au><au>Hu, Ying</au><au>Zhang, Chu-Yue</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Image restoration method based on GAN and multi-scale feature fusion</atitle><btitle>2020 Chinese Control And Decision Conference (CCDC)</btitle><stitle>CCDC</stitle><date>2020-08</date><risdate>2020</risdate><spage>2305</spage><epage>2310</epage><pages>2305-2310</pages><eissn>1948-9447</eissn><eisbn>9781728158556</eisbn><eisbn>1728158540</eisbn><eisbn>1728158559</eisbn><eisbn>9781728158549</eisbn><abstract>In the research of existing image restore algorithms, defective images and target images exist in pairs, which leads to poor applicability of the algorithm. Aiming at the shortcomings of the existing algorithms, such as low accuracy and poor visual consistency, an image restoration method based on GAN and multi-scale feature fusion was proposed. The generator of this algorithm uses a standard encoder-decoder structure. The encoder based on the VGG-16 full convolutional neural network is used to extract the features of the defect image. Low-dimensional features and high Dimensional features are fused to enrich the input of deep convolutions. Aiming at the problems of large error oscillation amplitude, gradient disappearance or gradient explosion in GAN training, the idea of WGAN is used, and the EM distance is used to simulate the sample data distribution. The similarity between the output restored image and the target image is enhanced by introducing L1 loss. This paper performs experiments on the same face data set. The experimental results show that the algorithm improves the accuracy of the restored image and can generate more realistic restored images.</abstract><pub>IEEE</pub><doi>10.1109/CCDC49329.2020.9164498</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1948-9447
ispartof 2020 Chinese Control And Decision Conference (CCDC), 2020, p.2305-2310
issn 1948-9447
language eng
recordid cdi_ieee_primary_9164498
source IEEE Xplore All Conference Series
subjects Decoding
Feature extraction
Feature fusion
Fully convolutional neural network
Gallium nitride
GAN
Generative adversarial networks
Generators
Image restoration
Training
VGG-16
WGAN
title Image restoration method based on GAN and multi-scale feature fusion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A33%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Image%20restoration%20method%20based%20on%20GAN%20and%20multi-scale%20feature%20fusion&rft.btitle=2020%20Chinese%20Control%20And%20Decision%20Conference%20(CCDC)&rft.au=Jin,%20Xin&rft.date=2020-08&rft.spage=2305&rft.epage=2310&rft.pages=2305-2310&rft.eissn=1948-9447&rft_id=info:doi/10.1109/CCDC49329.2020.9164498&rft.eisbn=9781728158556&rft.eisbn_list=1728158540&rft.eisbn_list=1728158559&rft.eisbn_list=9781728158549&rft_dat=%3Cieee_CHZPO%3E9164498%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-bd579a4cfee9045ebd4e0744ad6a9f985c8e6757d1559148da716002960099703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9164498&rfr_iscdi=true