Loading…
MPEG VBR video traffic modeling and classification using fuzzy technique
We present an approach for MPEG variable bit rate (VBR) video modeling and classification using fuzzy techniques. We demonstrate that a type-2 fuzzy membership function, i.e., a Gaussian MF with uncertain variance, is most appropriate to model the log-value of I/P/B frame sizes in MPEG VBR video. Th...
Saved in:
Published in: | IEEE transactions on fuzzy systems 2001-02, Vol.9 (1), p.183-193 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present an approach for MPEG variable bit rate (VBR) video modeling and classification using fuzzy techniques. We demonstrate that a type-2 fuzzy membership function, i.e., a Gaussian MF with uncertain variance, is most appropriate to model the log-value of I/P/B frame sizes in MPEG VBR video. The fuzzy c-means (FCM) method is used to obtain the mean and standard deviation (std) of T/P/B frame sizes when the frame category is unknown. We propose to use type-2 fuzzy logic classifiers (FLCs) to classify video traffic using compressed data. Five fuzzy classifiers and a Bayesian classifier are designed for video traffic classification, and the fuzzy classifiers are compared against the Bayesian classifier. Simulation results show that a type-2 fuzzy classifier in which the input is modeled as a type-2 fuzzy set and antecedent membership functions are modeled as type-2 fuzzy sets performs the best of the five classifiers when the testing video product is not included in the training products and a steepest descent algorithm is used to tune its parameters. |
---|---|
ISSN: | 1063-6706 1941-0034 |
DOI: | 10.1109/91.917124 |