Loading…

Orthogonal AMP for Massive Access in Channels With Spatial and Temporal Correlations

We address the joint device activity detection and channel estimation (JACE) problem in a massive MIMO connectivity scenario in which a large number of mobile devices are connected to a base station (BS), while only a small portion are active at any given time. The main objective is to provide an ef...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal on selected areas in communications 2021-03, Vol.39 (3), p.726-740
Main Authors: Cheng, Yiyao, Liu, Lei, Ping, Li
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We address the joint device activity detection and channel estimation (JACE) problem in a massive MIMO connectivity scenario in which a large number of mobile devices are connected to a base station (BS), while only a small portion are active at any given time. The main objective is to provide an efficient transmission and detection scheme with both spatial and temporal correlations. We formulate JACE as a multiple measurement vector (MMV) problem with correlated entries in the vectors to be estimated. We propose an MMV form of the orthogonal approximate message passing algorithm (OAMP-MMV). We derive a group Gram-Schmidt orthogonalization (GGSO) procedure for the realization of OAMP-MMV. We outline a state evolution (SE) procedure for OAMP-MMV and examine its accuracy using numerical results. We also compare OAMP-MMV with existing alternatives, including AMP-MMV and GTurbo-MMV. We show that OAMP-MMV outperforms AMP-MMV when pilot sequences are generated using Hadamard pilot matrices. Such a pilot design is attractive due to the low-cost signal processing technique using the fast Hadamard transform (FHT). We also show that OAMP-MMV outperforms GTurbo-MMV in correlated channels.
ISSN:0733-8716
1558-0008
DOI:10.1109/JSAC.2020.3018799