Loading…
Orthogonal AMP for Massive Access in Channels With Spatial and Temporal Correlations
We address the joint device activity detection and channel estimation (JACE) problem in a massive MIMO connectivity scenario in which a large number of mobile devices are connected to a base station (BS), while only a small portion are active at any given time. The main objective is to provide an ef...
Saved in:
Published in: | IEEE journal on selected areas in communications 2021-03, Vol.39 (3), p.726-740 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We address the joint device activity detection and channel estimation (JACE) problem in a massive MIMO connectivity scenario in which a large number of mobile devices are connected to a base station (BS), while only a small portion are active at any given time. The main objective is to provide an efficient transmission and detection scheme with both spatial and temporal correlations. We formulate JACE as a multiple measurement vector (MMV) problem with correlated entries in the vectors to be estimated. We propose an MMV form of the orthogonal approximate message passing algorithm (OAMP-MMV). We derive a group Gram-Schmidt orthogonalization (GGSO) procedure for the realization of OAMP-MMV. We outline a state evolution (SE) procedure for OAMP-MMV and examine its accuracy using numerical results. We also compare OAMP-MMV with existing alternatives, including AMP-MMV and GTurbo-MMV. We show that OAMP-MMV outperforms AMP-MMV when pilot sequences are generated using Hadamard pilot matrices. Such a pilot design is attractive due to the low-cost signal processing technique using the fast Hadamard transform (FHT). We also show that OAMP-MMV outperforms GTurbo-MMV in correlated channels. |
---|---|
ISSN: | 0733-8716 1558-0008 |
DOI: | 10.1109/JSAC.2020.3018799 |