Loading…
Monwatch: A fuzzy application to monitor the user behavior using wearable trackers
Nowadays, the proliferation of wearable devices has enabled monitoring user behaviours and activities in a non-invasive, autonomous and straightforward way. Moreover, new trend analysis has been boosted by biosignal sensors from wearable trackers, such as inertial or heart rate sensors. The knowledg...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 8 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Martinez-Cruz, Carmen Quero, Javier Medina Serrano, Jose M. Gramajo, Sergio |
description | Nowadays, the proliferation of wearable devices has enabled monitoring user behaviours and activities in a non-invasive, autonomous and straightforward way. Moreover, new trend analysis has been boosted by biosignal sensors from wearable trackers, such as inertial or heart rate sensors. The knowledge of such user activity presents a personalized monitoring to prevent any kind of physical or neurological disorders through the sensor evaluation by an expert. To this end, the definition of key indicators and the display of results and relevant analyses require of agile and effective tools. Therefore, this proposal presents a novel web application where the data obtained from a Fitbit Ionic smartwatch wearable are collected, synchronized and compiled to present a summary of an user's daily activity, which is defined by a linguistic description using fuzzy logic to represent the most relevant Health Key Indicators (HKI). Moreover, an analysis of the user's behaviour over time is proposed by inferring relevant patterns from a fuzzy clustering algorithm. |
doi_str_mv | 10.1109/FUZZ48607.2020.9177748 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9177748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9177748</ieee_id><sourcerecordid>9177748</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-fcda55de6dd1b4284afaeaacb7d5ba471d9658c484769313da7e75f5b870d30c3</originalsourceid><addsrcrecordid>eNotj9FKwzAYRqMguE2fQJC8QGfSJE3q3RhOhYkg7mY342_y10a7tqSpY3t6C-7qwMfhg0PIPWdzzln-sNpst9JkTM9TlrJ5zrXW0lyQKdep4VkuUn5JJlwpk0gt8msy7ftvNqpM5RPy8dY2B4i2eqQLWg6n05FC19XeQvRtQ2NL923jYxtorJAOPQZaYAW_flyG3jdf9IAQoKiRxgD2B0N_Q65KqHu8PXNGNqunz-VLsn5_fl0u1olPmYhJaR0o5TBzjhcyNRJKQABbaKcKkJq7PFPGSiP1GMGFA41alaowmjnBrJiRu_9fj4i7Lvg9hOPu3C_-AGn9UhE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Monwatch: A fuzzy application to monitor the user behavior using wearable trackers</title><source>IEEE Xplore All Conference Series</source><creator>Martinez-Cruz, Carmen ; Quero, Javier Medina ; Serrano, Jose M. ; Gramajo, Sergio</creator><creatorcontrib>Martinez-Cruz, Carmen ; Quero, Javier Medina ; Serrano, Jose M. ; Gramajo, Sergio</creatorcontrib><description>Nowadays, the proliferation of wearable devices has enabled monitoring user behaviours and activities in a non-invasive, autonomous and straightforward way. Moreover, new trend analysis has been boosted by biosignal sensors from wearable trackers, such as inertial or heart rate sensors. The knowledge of such user activity presents a personalized monitoring to prevent any kind of physical or neurological disorders through the sensor evaluation by an expert. To this end, the definition of key indicators and the display of results and relevant analyses require of agile and effective tools. Therefore, this proposal presents a novel web application where the data obtained from a Fitbit Ionic smartwatch wearable are collected, synchronized and compiled to present a summary of an user's daily activity, which is defined by a linguistic description using fuzzy logic to represent the most relevant Health Key Indicators (HKI). Moreover, an analysis of the user's behaviour over time is proposed by inferring relevant patterns from a fuzzy clustering algorithm.</description><identifier>EISSN: 1558-4739</identifier><identifier>EISBN: 1728169321</identifier><identifier>EISBN: 9781728169323</identifier><identifier>DOI: 10.1109/FUZZ48607.2020.9177748</identifier><language>eng</language><publisher>IEEE</publisher><ispartof>2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2020, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9177748$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9177748$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Martinez-Cruz, Carmen</creatorcontrib><creatorcontrib>Quero, Javier Medina</creatorcontrib><creatorcontrib>Serrano, Jose M.</creatorcontrib><creatorcontrib>Gramajo, Sergio</creatorcontrib><title>Monwatch: A fuzzy application to monitor the user behavior using wearable trackers</title><title>2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)</title><addtitle>FUZZ</addtitle><description>Nowadays, the proliferation of wearable devices has enabled monitoring user behaviours and activities in a non-invasive, autonomous and straightforward way. Moreover, new trend analysis has been boosted by biosignal sensors from wearable trackers, such as inertial or heart rate sensors. The knowledge of such user activity presents a personalized monitoring to prevent any kind of physical or neurological disorders through the sensor evaluation by an expert. To this end, the definition of key indicators and the display of results and relevant analyses require of agile and effective tools. Therefore, this proposal presents a novel web application where the data obtained from a Fitbit Ionic smartwatch wearable are collected, synchronized and compiled to present a summary of an user's daily activity, which is defined by a linguistic description using fuzzy logic to represent the most relevant Health Key Indicators (HKI). Moreover, an analysis of the user's behaviour over time is proposed by inferring relevant patterns from a fuzzy clustering algorithm.</description><issn>1558-4739</issn><isbn>1728169321</isbn><isbn>9781728169323</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj9FKwzAYRqMguE2fQJC8QGfSJE3q3RhOhYkg7mY342_y10a7tqSpY3t6C-7qwMfhg0PIPWdzzln-sNpst9JkTM9TlrJ5zrXW0lyQKdep4VkuUn5JJlwpk0gt8msy7ftvNqpM5RPy8dY2B4i2eqQLWg6n05FC19XeQvRtQ2NL923jYxtorJAOPQZaYAW_flyG3jdf9IAQoKiRxgD2B0N_Q65KqHu8PXNGNqunz-VLsn5_fl0u1olPmYhJaR0o5TBzjhcyNRJKQABbaKcKkJq7PFPGSiP1GMGFA41alaowmjnBrJiRu_9fj4i7Lvg9hOPu3C_-AGn9UhE</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Martinez-Cruz, Carmen</creator><creator>Quero, Javier Medina</creator><creator>Serrano, Jose M.</creator><creator>Gramajo, Sergio</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>202007</creationdate><title>Monwatch: A fuzzy application to monitor the user behavior using wearable trackers</title><author>Martinez-Cruz, Carmen ; Quero, Javier Medina ; Serrano, Jose M. ; Gramajo, Sergio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-fcda55de6dd1b4284afaeaacb7d5ba471d9658c484769313da7e75f5b870d30c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Martinez-Cruz, Carmen</creatorcontrib><creatorcontrib>Quero, Javier Medina</creatorcontrib><creatorcontrib>Serrano, Jose M.</creatorcontrib><creatorcontrib>Gramajo, Sergio</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Martinez-Cruz, Carmen</au><au>Quero, Javier Medina</au><au>Serrano, Jose M.</au><au>Gramajo, Sergio</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Monwatch: A fuzzy application to monitor the user behavior using wearable trackers</atitle><btitle>2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)</btitle><stitle>FUZZ</stitle><date>2020-07</date><risdate>2020</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><eissn>1558-4739</eissn><eisbn>1728169321</eisbn><eisbn>9781728169323</eisbn><abstract>Nowadays, the proliferation of wearable devices has enabled monitoring user behaviours and activities in a non-invasive, autonomous and straightforward way. Moreover, new trend analysis has been boosted by biosignal sensors from wearable trackers, such as inertial or heart rate sensors. The knowledge of such user activity presents a personalized monitoring to prevent any kind of physical or neurological disorders through the sensor evaluation by an expert. To this end, the definition of key indicators and the display of results and relevant analyses require of agile and effective tools. Therefore, this proposal presents a novel web application where the data obtained from a Fitbit Ionic smartwatch wearable are collected, synchronized and compiled to present a summary of an user's daily activity, which is defined by a linguistic description using fuzzy logic to represent the most relevant Health Key Indicators (HKI). Moreover, an analysis of the user's behaviour over time is proposed by inferring relevant patterns from a fuzzy clustering algorithm.</abstract><pub>IEEE</pub><doi>10.1109/FUZZ48607.2020.9177748</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 1558-4739 |
ispartof | 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2020, p.1-8 |
issn | 1558-4739 |
language | eng |
recordid | cdi_ieee_primary_9177748 |
source | IEEE Xplore All Conference Series |
title | Monwatch: A fuzzy application to monitor the user behavior using wearable trackers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A17%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Monwatch:%20A%20fuzzy%20application%20to%20monitor%20the%20user%20behavior%20using%20wearable%20trackers&rft.btitle=2020%20IEEE%20International%20Conference%20on%20Fuzzy%20Systems%20(FUZZ-IEEE)&rft.au=Martinez-Cruz,%20Carmen&rft.date=2020-07&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.eissn=1558-4739&rft_id=info:doi/10.1109/FUZZ48607.2020.9177748&rft.eisbn=1728169321&rft.eisbn_list=9781728169323&rft_dat=%3Cieee_CHZPO%3E9177748%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-fcda55de6dd1b4284afaeaacb7d5ba471d9658c484769313da7e75f5b870d30c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9177748&rfr_iscdi=true |