Loading…

Monwatch: A fuzzy application to monitor the user behavior using wearable trackers

Nowadays, the proliferation of wearable devices has enabled monitoring user behaviours and activities in a non-invasive, autonomous and straightforward way. Moreover, new trend analysis has been boosted by biosignal sensors from wearable trackers, such as inertial or heart rate sensors. The knowledg...

Full description

Saved in:
Bibliographic Details
Main Authors: Martinez-Cruz, Carmen, Quero, Javier Medina, Serrano, Jose M., Gramajo, Sergio
Format: Conference Proceeding
Language:English
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Martinez-Cruz, Carmen
Quero, Javier Medina
Serrano, Jose M.
Gramajo, Sergio
description Nowadays, the proliferation of wearable devices has enabled monitoring user behaviours and activities in a non-invasive, autonomous and straightforward way. Moreover, new trend analysis has been boosted by biosignal sensors from wearable trackers, such as inertial or heart rate sensors. The knowledge of such user activity presents a personalized monitoring to prevent any kind of physical or neurological disorders through the sensor evaluation by an expert. To this end, the definition of key indicators and the display of results and relevant analyses require of agile and effective tools. Therefore, this proposal presents a novel web application where the data obtained from a Fitbit Ionic smartwatch wearable are collected, synchronized and compiled to present a summary of an user's daily activity, which is defined by a linguistic description using fuzzy logic to represent the most relevant Health Key Indicators (HKI). Moreover, an analysis of the user's behaviour over time is proposed by inferring relevant patterns from a fuzzy clustering algorithm.
doi_str_mv 10.1109/FUZZ48607.2020.9177748
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9177748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9177748</ieee_id><sourcerecordid>9177748</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-fcda55de6dd1b4284afaeaacb7d5ba471d9658c484769313da7e75f5b870d30c3</originalsourceid><addsrcrecordid>eNotj9FKwzAYRqMguE2fQJC8QGfSJE3q3RhOhYkg7mY342_y10a7tqSpY3t6C-7qwMfhg0PIPWdzzln-sNpst9JkTM9TlrJ5zrXW0lyQKdep4VkuUn5JJlwpk0gt8msy7ftvNqpM5RPy8dY2B4i2eqQLWg6n05FC19XeQvRtQ2NL923jYxtorJAOPQZaYAW_flyG3jdf9IAQoKiRxgD2B0N_Q65KqHu8PXNGNqunz-VLsn5_fl0u1olPmYhJaR0o5TBzjhcyNRJKQABbaKcKkJq7PFPGSiP1GMGFA41alaowmjnBrJiRu_9fj4i7Lvg9hOPu3C_-AGn9UhE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Monwatch: A fuzzy application to monitor the user behavior using wearable trackers</title><source>IEEE Xplore All Conference Series</source><creator>Martinez-Cruz, Carmen ; Quero, Javier Medina ; Serrano, Jose M. ; Gramajo, Sergio</creator><creatorcontrib>Martinez-Cruz, Carmen ; Quero, Javier Medina ; Serrano, Jose M. ; Gramajo, Sergio</creatorcontrib><description>Nowadays, the proliferation of wearable devices has enabled monitoring user behaviours and activities in a non-invasive, autonomous and straightforward way. Moreover, new trend analysis has been boosted by biosignal sensors from wearable trackers, such as inertial or heart rate sensors. The knowledge of such user activity presents a personalized monitoring to prevent any kind of physical or neurological disorders through the sensor evaluation by an expert. To this end, the definition of key indicators and the display of results and relevant analyses require of agile and effective tools. Therefore, this proposal presents a novel web application where the data obtained from a Fitbit Ionic smartwatch wearable are collected, synchronized and compiled to present a summary of an user's daily activity, which is defined by a linguistic description using fuzzy logic to represent the most relevant Health Key Indicators (HKI). Moreover, an analysis of the user's behaviour over time is proposed by inferring relevant patterns from a fuzzy clustering algorithm.</description><identifier>EISSN: 1558-4739</identifier><identifier>EISBN: 1728169321</identifier><identifier>EISBN: 9781728169323</identifier><identifier>DOI: 10.1109/FUZZ48607.2020.9177748</identifier><language>eng</language><publisher>IEEE</publisher><ispartof>2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2020, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9177748$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9177748$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Martinez-Cruz, Carmen</creatorcontrib><creatorcontrib>Quero, Javier Medina</creatorcontrib><creatorcontrib>Serrano, Jose M.</creatorcontrib><creatorcontrib>Gramajo, Sergio</creatorcontrib><title>Monwatch: A fuzzy application to monitor the user behavior using wearable trackers</title><title>2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)</title><addtitle>FUZZ</addtitle><description>Nowadays, the proliferation of wearable devices has enabled monitoring user behaviours and activities in a non-invasive, autonomous and straightforward way. Moreover, new trend analysis has been boosted by biosignal sensors from wearable trackers, such as inertial or heart rate sensors. The knowledge of such user activity presents a personalized monitoring to prevent any kind of physical or neurological disorders through the sensor evaluation by an expert. To this end, the definition of key indicators and the display of results and relevant analyses require of agile and effective tools. Therefore, this proposal presents a novel web application where the data obtained from a Fitbit Ionic smartwatch wearable are collected, synchronized and compiled to present a summary of an user's daily activity, which is defined by a linguistic description using fuzzy logic to represent the most relevant Health Key Indicators (HKI). Moreover, an analysis of the user's behaviour over time is proposed by inferring relevant patterns from a fuzzy clustering algorithm.</description><issn>1558-4739</issn><isbn>1728169321</isbn><isbn>9781728169323</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj9FKwzAYRqMguE2fQJC8QGfSJE3q3RhOhYkg7mY342_y10a7tqSpY3t6C-7qwMfhg0PIPWdzzln-sNpst9JkTM9TlrJ5zrXW0lyQKdep4VkuUn5JJlwpk0gt8msy7ftvNqpM5RPy8dY2B4i2eqQLWg6n05FC19XeQvRtQ2NL923jYxtorJAOPQZaYAW_flyG3jdf9IAQoKiRxgD2B0N_Q65KqHu8PXNGNqunz-VLsn5_fl0u1olPmYhJaR0o5TBzjhcyNRJKQABbaKcKkJq7PFPGSiP1GMGFA41alaowmjnBrJiRu_9fj4i7Lvg9hOPu3C_-AGn9UhE</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Martinez-Cruz, Carmen</creator><creator>Quero, Javier Medina</creator><creator>Serrano, Jose M.</creator><creator>Gramajo, Sergio</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>202007</creationdate><title>Monwatch: A fuzzy application to monitor the user behavior using wearable trackers</title><author>Martinez-Cruz, Carmen ; Quero, Javier Medina ; Serrano, Jose M. ; Gramajo, Sergio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-fcda55de6dd1b4284afaeaacb7d5ba471d9658c484769313da7e75f5b870d30c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Martinez-Cruz, Carmen</creatorcontrib><creatorcontrib>Quero, Javier Medina</creatorcontrib><creatorcontrib>Serrano, Jose M.</creatorcontrib><creatorcontrib>Gramajo, Sergio</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Martinez-Cruz, Carmen</au><au>Quero, Javier Medina</au><au>Serrano, Jose M.</au><au>Gramajo, Sergio</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Monwatch: A fuzzy application to monitor the user behavior using wearable trackers</atitle><btitle>2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)</btitle><stitle>FUZZ</stitle><date>2020-07</date><risdate>2020</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><eissn>1558-4739</eissn><eisbn>1728169321</eisbn><eisbn>9781728169323</eisbn><abstract>Nowadays, the proliferation of wearable devices has enabled monitoring user behaviours and activities in a non-invasive, autonomous and straightforward way. Moreover, new trend analysis has been boosted by biosignal sensors from wearable trackers, such as inertial or heart rate sensors. The knowledge of such user activity presents a personalized monitoring to prevent any kind of physical or neurological disorders through the sensor evaluation by an expert. To this end, the definition of key indicators and the display of results and relevant analyses require of agile and effective tools. Therefore, this proposal presents a novel web application where the data obtained from a Fitbit Ionic smartwatch wearable are collected, synchronized and compiled to present a summary of an user's daily activity, which is defined by a linguistic description using fuzzy logic to represent the most relevant Health Key Indicators (HKI). Moreover, an analysis of the user's behaviour over time is proposed by inferring relevant patterns from a fuzzy clustering algorithm.</abstract><pub>IEEE</pub><doi>10.1109/FUZZ48607.2020.9177748</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1558-4739
ispartof 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2020, p.1-8
issn 1558-4739
language eng
recordid cdi_ieee_primary_9177748
source IEEE Xplore All Conference Series
title Monwatch: A fuzzy application to monitor the user behavior using wearable trackers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A17%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Monwatch:%20A%20fuzzy%20application%20to%20monitor%20the%20user%20behavior%20using%20wearable%20trackers&rft.btitle=2020%20IEEE%20International%20Conference%20on%20Fuzzy%20Systems%20(FUZZ-IEEE)&rft.au=Martinez-Cruz,%20Carmen&rft.date=2020-07&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.eissn=1558-4739&rft_id=info:doi/10.1109/FUZZ48607.2020.9177748&rft.eisbn=1728169321&rft.eisbn_list=9781728169323&rft_dat=%3Cieee_CHZPO%3E9177748%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-fcda55de6dd1b4284afaeaacb7d5ba471d9658c484769313da7e75f5b870d30c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9177748&rfr_iscdi=true