Loading…

Optimal Current Reference Calculation for MMCs Considering Converter Limitations

The paper addresses an optimization-based reference calculation method for Modular Multilevel Converters (MMC) operating in normal and constrained situations (when the converter needs to prioritize its quantities as it has reached voltage or current limitations, e.g. during system faults). The optim...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power delivery 2021-08, Vol.36 (4), p.2097-2108
Main Authors: Westerman Spier, Daniel, Prieto-Araujo, Eduardo, Lopez-Mestre, Joaquim, Gomis-Bellmunt, Oriol
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c339t-daf8a51d37c219c5f4403ad861d81df67fd84b198d46c29099219c2ca6395f513
cites cdi_FETCH-LOGICAL-c339t-daf8a51d37c219c5f4403ad861d81df67fd84b198d46c29099219c2ca6395f513
container_end_page 2108
container_issue 4
container_start_page 2097
container_title IEEE transactions on power delivery
container_volume 36
creator Westerman Spier, Daniel
Prieto-Araujo, Eduardo
Lopez-Mestre, Joaquim
Gomis-Bellmunt, Oriol
description The paper addresses an optimization-based reference calculation method for Modular Multilevel Converters (MMC) operating in normal and constrained situations (when the converter needs to prioritize its quantities as it has reached voltage or current limitations, e.g. during system faults). The optimization problem prioritizes to satisfy the external AC active and reactive current set-points demanded by the grid operator through the corresponding grid code. If the operator demands are fulfilled, it uses the available MMC degrees of freedom to minimize the arm inductance losses. Otherwise, if the operator demanded AC set-points cannot be accomplished, the optimization attempts to minimize the error prioritizing between either AC active or reactive currents. The optimization problem constraints are imposed through a steady-state model considering simultaneously the external and internal AC and DC magnitudes of the converter. The steady-state model also includes the voltage variation in the equivalent arm capacitors (considering the ripple). Then, the imposed limitations are the maximum allowed grid and arm currents, the maximum allowed arm voltages and the sub-module capacitor maximum voltages. The paper presents a detailed formulation of the optimization problem and applies it to several case studies where it is shown that the presented approach can be potentially used to obtain the MMC references both in normal and fault conditions.
doi_str_mv 10.1109/TPWRD.2020.3020420
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9181422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9181422</ieee_id><sourcerecordid>2555725037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-daf8a51d37c219c5f4403ad861d81df67fd84b198d46c29099219c2ca6395f513</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKd_QG8KXneefLXJpdRP2NgYEy9DzId0dO1MWsF_b7qJNznvxfOecB6ErjHMMAZ5t1m9rx9mBAjMaHoYgRM0wZKWeYriFE1ACJ4LWZbn6CLGLQAwkDBBq-W-r3e6yaohBNf22dp5l4JxWaUbMzS6r7s2813IFosqZlXXxtq6ULefY_52oXchm9e7uj-Q8RKded1Ed_U3p-jt6XFTveTz5fNrdT_PDaWyz632QnNsaWkIloZ7xoBqKwpsBba-KL0V7ANLYVlhiAQpR4wYXVDJPcd0im6Pe_eh-xpc7NW2G0KbvlSEc14SDrRMFDlSJnQxBufVPqRzw4_CoEZz6mBOjebUn7lUujmWaufcf0FigRkh9BcUL2nr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555725037</pqid></control><display><type>article</type><title>Optimal Current Reference Calculation for MMCs Considering Converter Limitations</title><source>IEEE Xplore (Online service)</source><creator>Westerman Spier, Daniel ; Prieto-Araujo, Eduardo ; Lopez-Mestre, Joaquim ; Gomis-Bellmunt, Oriol</creator><creatorcontrib>Westerman Spier, Daniel ; Prieto-Araujo, Eduardo ; Lopez-Mestre, Joaquim ; Gomis-Bellmunt, Oriol</creatorcontrib><description>The paper addresses an optimization-based reference calculation method for Modular Multilevel Converters (MMC) operating in normal and constrained situations (when the converter needs to prioritize its quantities as it has reached voltage or current limitations, e.g. during system faults). The optimization problem prioritizes to satisfy the external AC active and reactive current set-points demanded by the grid operator through the corresponding grid code. If the operator demands are fulfilled, it uses the available MMC degrees of freedom to minimize the arm inductance losses. Otherwise, if the operator demanded AC set-points cannot be accomplished, the optimization attempts to minimize the error prioritizing between either AC active or reactive currents. The optimization problem constraints are imposed through a steady-state model considering simultaneously the external and internal AC and DC magnitudes of the converter. The steady-state model also includes the voltage variation in the equivalent arm capacitors (considering the ripple). Then, the imposed limitations are the maximum allowed grid and arm currents, the maximum allowed arm voltages and the sub-module capacitor maximum voltages. The paper presents a detailed formulation of the optimization problem and applies it to several case studies where it is shown that the presented approach can be potentially used to obtain the MMC references both in normal and fault conditions.</description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/TPWRD.2020.3020420</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Alternating current ; Analytical models ; Capacitors ; Constraint modelling ; Electric converters ; Electric potential ; grid support ; Inductance ; Mathematical analysis ; Mathematical model ; Metal matrix composites ; Modular multilevel converter (MMC) ; Optimization ; reference optimization ; Steady state models ; Steady-state ; steady-state analysis ; Voltage</subject><ispartof>IEEE transactions on power delivery, 2021-08, Vol.36 (4), p.2097-2108</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-daf8a51d37c219c5f4403ad861d81df67fd84b198d46c29099219c2ca6395f513</citedby><cites>FETCH-LOGICAL-c339t-daf8a51d37c219c5f4403ad861d81df67fd84b198d46c29099219c2ca6395f513</cites><orcidid>0000-0003-3477-6328 ; 0000-0002-9507-8278 ; 0000-0003-4349-5923</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9181422$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27906,27907,54778</link.rule.ids></links><search><creatorcontrib>Westerman Spier, Daniel</creatorcontrib><creatorcontrib>Prieto-Araujo, Eduardo</creatorcontrib><creatorcontrib>Lopez-Mestre, Joaquim</creatorcontrib><creatorcontrib>Gomis-Bellmunt, Oriol</creatorcontrib><title>Optimal Current Reference Calculation for MMCs Considering Converter Limitations</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description>The paper addresses an optimization-based reference calculation method for Modular Multilevel Converters (MMC) operating in normal and constrained situations (when the converter needs to prioritize its quantities as it has reached voltage or current limitations, e.g. during system faults). The optimization problem prioritizes to satisfy the external AC active and reactive current set-points demanded by the grid operator through the corresponding grid code. If the operator demands are fulfilled, it uses the available MMC degrees of freedom to minimize the arm inductance losses. Otherwise, if the operator demanded AC set-points cannot be accomplished, the optimization attempts to minimize the error prioritizing between either AC active or reactive currents. The optimization problem constraints are imposed through a steady-state model considering simultaneously the external and internal AC and DC magnitudes of the converter. The steady-state model also includes the voltage variation in the equivalent arm capacitors (considering the ripple). Then, the imposed limitations are the maximum allowed grid and arm currents, the maximum allowed arm voltages and the sub-module capacitor maximum voltages. The paper presents a detailed formulation of the optimization problem and applies it to several case studies where it is shown that the presented approach can be potentially used to obtain the MMC references both in normal and fault conditions.</description><subject>Adaptation models</subject><subject>Alternating current</subject><subject>Analytical models</subject><subject>Capacitors</subject><subject>Constraint modelling</subject><subject>Electric converters</subject><subject>Electric potential</subject><subject>grid support</subject><subject>Inductance</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Metal matrix composites</subject><subject>Modular multilevel converter (MMC)</subject><subject>Optimization</subject><subject>reference optimization</subject><subject>Steady state models</subject><subject>Steady-state</subject><subject>steady-state analysis</subject><subject>Voltage</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOKd_QG8KXneefLXJpdRP2NgYEy9DzId0dO1MWsF_b7qJNznvxfOecB6ErjHMMAZ5t1m9rx9mBAjMaHoYgRM0wZKWeYriFE1ACJ4LWZbn6CLGLQAwkDBBq-W-r3e6yaohBNf22dp5l4JxWaUbMzS6r7s2813IFosqZlXXxtq6ULefY_52oXchm9e7uj-Q8RKded1Ed_U3p-jt6XFTveTz5fNrdT_PDaWyz632QnNsaWkIloZ7xoBqKwpsBba-KL0V7ANLYVlhiAQpR4wYXVDJPcd0im6Pe_eh-xpc7NW2G0KbvlSEc14SDrRMFDlSJnQxBufVPqRzw4_CoEZz6mBOjebUn7lUujmWaufcf0FigRkh9BcUL2nr</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Westerman Spier, Daniel</creator><creator>Prieto-Araujo, Eduardo</creator><creator>Lopez-Mestre, Joaquim</creator><creator>Gomis-Bellmunt, Oriol</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3477-6328</orcidid><orcidid>https://orcid.org/0000-0002-9507-8278</orcidid><orcidid>https://orcid.org/0000-0003-4349-5923</orcidid></search><sort><creationdate>20210801</creationdate><title>Optimal Current Reference Calculation for MMCs Considering Converter Limitations</title><author>Westerman Spier, Daniel ; Prieto-Araujo, Eduardo ; Lopez-Mestre, Joaquim ; Gomis-Bellmunt, Oriol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-daf8a51d37c219c5f4403ad861d81df67fd84b198d46c29099219c2ca6395f513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation models</topic><topic>Alternating current</topic><topic>Analytical models</topic><topic>Capacitors</topic><topic>Constraint modelling</topic><topic>Electric converters</topic><topic>Electric potential</topic><topic>grid support</topic><topic>Inductance</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Metal matrix composites</topic><topic>Modular multilevel converter (MMC)</topic><topic>Optimization</topic><topic>reference optimization</topic><topic>Steady state models</topic><topic>Steady-state</topic><topic>steady-state analysis</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Westerman Spier, Daniel</creatorcontrib><creatorcontrib>Prieto-Araujo, Eduardo</creatorcontrib><creatorcontrib>Lopez-Mestre, Joaquim</creatorcontrib><creatorcontrib>Gomis-Bellmunt, Oriol</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Westerman Spier, Daniel</au><au>Prieto-Araujo, Eduardo</au><au>Lopez-Mestre, Joaquim</au><au>Gomis-Bellmunt, Oriol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Current Reference Calculation for MMCs Considering Converter Limitations</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>36</volume><issue>4</issue><spage>2097</spage><epage>2108</epage><pages>2097-2108</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>The paper addresses an optimization-based reference calculation method for Modular Multilevel Converters (MMC) operating in normal and constrained situations (when the converter needs to prioritize its quantities as it has reached voltage or current limitations, e.g. during system faults). The optimization problem prioritizes to satisfy the external AC active and reactive current set-points demanded by the grid operator through the corresponding grid code. If the operator demands are fulfilled, it uses the available MMC degrees of freedom to minimize the arm inductance losses. Otherwise, if the operator demanded AC set-points cannot be accomplished, the optimization attempts to minimize the error prioritizing between either AC active or reactive currents. The optimization problem constraints are imposed through a steady-state model considering simultaneously the external and internal AC and DC magnitudes of the converter. The steady-state model also includes the voltage variation in the equivalent arm capacitors (considering the ripple). Then, the imposed limitations are the maximum allowed grid and arm currents, the maximum allowed arm voltages and the sub-module capacitor maximum voltages. The paper presents a detailed formulation of the optimization problem and applies it to several case studies where it is shown that the presented approach can be potentially used to obtain the MMC references both in normal and fault conditions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRD.2020.3020420</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3477-6328</orcidid><orcidid>https://orcid.org/0000-0002-9507-8278</orcidid><orcidid>https://orcid.org/0000-0003-4349-5923</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-8977
ispartof IEEE transactions on power delivery, 2021-08, Vol.36 (4), p.2097-2108
issn 0885-8977
1937-4208
language eng
recordid cdi_ieee_primary_9181422
source IEEE Xplore (Online service)
subjects Adaptation models
Alternating current
Analytical models
Capacitors
Constraint modelling
Electric converters
Electric potential
grid support
Inductance
Mathematical analysis
Mathematical model
Metal matrix composites
Modular multilevel converter (MMC)
Optimization
reference optimization
Steady state models
Steady-state
steady-state analysis
Voltage
title Optimal Current Reference Calculation for MMCs Considering Converter Limitations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A14%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Current%20Reference%20Calculation%20for%20MMCs%20Considering%20Converter%20Limitations&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=Westerman%20Spier,%20Daniel&rft.date=2021-08-01&rft.volume=36&rft.issue=4&rft.spage=2097&rft.epage=2108&rft.pages=2097-2108&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/TPWRD.2020.3020420&rft_dat=%3Cproquest_ieee_%3E2555725037%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-daf8a51d37c219c5f4403ad861d81df67fd84b198d46c29099219c2ca6395f513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2555725037&rft_id=info:pmid/&rft_ieee_id=9181422&rfr_iscdi=true