Loading…

Short-Term PV Power Prediction Based on Optimized VMD and LSTM

Because of intermittence and fluctuation of photovoltaic (PV) power, it is difficult to enhance prediction accuracy. To sustain high-efficient operation of power system, this paper proposes a hybrid method to predict the short-term PV power. It consists of components separation of PV power, paramete...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020, Vol.8, p.165849-165862
Main Authors: Wang, Lishu, Liu, Yanhui, Li, Tianshu, Xie, Xinze, Chang, Chengming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-a7cd094484315c33ac5d0395795653cdb7148529e369ba2295cb54972f0e61313
cites cdi_FETCH-LOGICAL-c408t-a7cd094484315c33ac5d0395795653cdb7148529e369ba2295cb54972f0e61313
container_end_page 165862
container_issue
container_start_page 165849
container_title IEEE access
container_volume 8
creator Wang, Lishu
Liu, Yanhui
Li, Tianshu
Xie, Xinze
Chang, Chengming
description Because of intermittence and fluctuation of photovoltaic (PV) power, it is difficult to enhance prediction accuracy. To sustain high-efficient operation of power system, this paper proposes a hybrid method to predict the short-term PV power. It consists of components separation of PV power, parameters optimization and re-construction of prediction result. Firstly, the methods based on the identifying of feature frequency and mutual information maximum are proposed to optimize the mode number and penalty factor of VMD, respectively. The optimized VMD (OVMD) is used to decompose the complicated fluctuation components of PV power into single component. Then, the improved PSO (IPSO) based on non-linear inertia weight of anti-sine function is proposed to optimize the number of hidden layer nodes, learning rate and iteration number of LSTM network. The optimized LSTM is used to predict each single component of OVMD decomposition. Thirdly, the prediction result of each single component is re-constructed to obtain the final PV prediction power. The experiment result indicates that the prediction accuracy of the proposed method (OVMD-IPSO-LSTM) outperformances the other typical methods. By the improvement of the traditional method (VMD and PSO) and the parameter optimization of LSTM, this hybrid method makes a contribution to the prediction of short-term PV power.
doi_str_mv 10.1109/ACCESS.2020.3022246
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9187409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9187409</ieee_id><doaj_id>oai_doaj_org_article_bd6d10da505d4a1788323c0cd5d21475</doaj_id><sourcerecordid>2454678587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a7cd094484315c33ac5d0395795653cdb7148529e369ba2295cb54972f0e61313</originalsourceid><addsrcrecordid>eNpNUF1LAkEUXaIgMX-BLws9r833x0tgZiUoCmu-DrMzY42oY7MrUb--sZXovtx7D_ecezhZ1odgACGQd8PRaFyWAwQQGGCAECLsIusgyGSBKWaX_-brrFfXG5BKJIjyTnZfvofYFEsXd_lilS_Cp4v5IjrrTePDPn_QtbN5GuaHxu_8d1pWs8dc720-LZezm-xqrbe16517N3t9Gi9HL8V0_jwZDaeFIUA0hebGAkmIIBhSg7E21AKcDEjKKDa24pAIiqTDTFYaIUlNRYnkaA0cgxjibjZpdW3QG3WIfqfjlwraq18gxDelY-PN1qnKMguB1RRQSzTkQmCEDTCWWgQJp0nrttU6xPBxdHWjNuEY98m-QoQSxgUVPF3h9srEUNfRrf--QqBOuas2d3XKXZ1zT6x-y_LOuT-GhIITIPEPJhh53A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454678587</pqid></control><display><type>article</type><title>Short-Term PV Power Prediction Based on Optimized VMD and LSTM</title><source>IEEE Open Access Journals</source><creator>Wang, Lishu ; Liu, Yanhui ; Li, Tianshu ; Xie, Xinze ; Chang, Chengming</creator><creatorcontrib>Wang, Lishu ; Liu, Yanhui ; Li, Tianshu ; Xie, Xinze ; Chang, Chengming</creatorcontrib><description>Because of intermittence and fluctuation of photovoltaic (PV) power, it is difficult to enhance prediction accuracy. To sustain high-efficient operation of power system, this paper proposes a hybrid method to predict the short-term PV power. It consists of components separation of PV power, parameters optimization and re-construction of prediction result. Firstly, the methods based on the identifying of feature frequency and mutual information maximum are proposed to optimize the mode number and penalty factor of VMD, respectively. The optimized VMD (OVMD) is used to decompose the complicated fluctuation components of PV power into single component. Then, the improved PSO (IPSO) based on non-linear inertia weight of anti-sine function is proposed to optimize the number of hidden layer nodes, learning rate and iteration number of LSTM network. The optimized LSTM is used to predict each single component of OVMD decomposition. Thirdly, the prediction result of each single component is re-constructed to obtain the final PV prediction power. The experiment result indicates that the prediction accuracy of the proposed method (OVMD-IPSO-LSTM) outperformances the other typical methods. By the improvement of the traditional method (VMD and PSO) and the parameter optimization of LSTM, this hybrid method makes a contribution to the prediction of short-term PV power.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3022246</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Convergence ; Decomposition ; Fluctuations ; Logic gates ; LSTM ; Mutual information ; Optimization ; parameter optimization ; Parameters ; Photovoltaic cells ; photovoltaic power prediction ; Power system ; Predictive models ; PSO ; Trigonometric functions</subject><ispartof>IEEE access, 2020, Vol.8, p.165849-165862</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a7cd094484315c33ac5d0395795653cdb7148529e369ba2295cb54972f0e61313</citedby><cites>FETCH-LOGICAL-c408t-a7cd094484315c33ac5d0395795653cdb7148529e369ba2295cb54972f0e61313</cites><orcidid>0000-0002-5972-2564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9187409$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Wang, Lishu</creatorcontrib><creatorcontrib>Liu, Yanhui</creatorcontrib><creatorcontrib>Li, Tianshu</creatorcontrib><creatorcontrib>Xie, Xinze</creatorcontrib><creatorcontrib>Chang, Chengming</creatorcontrib><title>Short-Term PV Power Prediction Based on Optimized VMD and LSTM</title><title>IEEE access</title><addtitle>Access</addtitle><description>Because of intermittence and fluctuation of photovoltaic (PV) power, it is difficult to enhance prediction accuracy. To sustain high-efficient operation of power system, this paper proposes a hybrid method to predict the short-term PV power. It consists of components separation of PV power, parameters optimization and re-construction of prediction result. Firstly, the methods based on the identifying of feature frequency and mutual information maximum are proposed to optimize the mode number and penalty factor of VMD, respectively. The optimized VMD (OVMD) is used to decompose the complicated fluctuation components of PV power into single component. Then, the improved PSO (IPSO) based on non-linear inertia weight of anti-sine function is proposed to optimize the number of hidden layer nodes, learning rate and iteration number of LSTM network. The optimized LSTM is used to predict each single component of OVMD decomposition. Thirdly, the prediction result of each single component is re-constructed to obtain the final PV prediction power. The experiment result indicates that the prediction accuracy of the proposed method (OVMD-IPSO-LSTM) outperformances the other typical methods. By the improvement of the traditional method (VMD and PSO) and the parameter optimization of LSTM, this hybrid method makes a contribution to the prediction of short-term PV power.</description><subject>Convergence</subject><subject>Decomposition</subject><subject>Fluctuations</subject><subject>Logic gates</subject><subject>LSTM</subject><subject>Mutual information</subject><subject>Optimization</subject><subject>parameter optimization</subject><subject>Parameters</subject><subject>Photovoltaic cells</subject><subject>photovoltaic power prediction</subject><subject>Power system</subject><subject>Predictive models</subject><subject>PSO</subject><subject>Trigonometric functions</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUF1LAkEUXaIgMX-BLws9r833x0tgZiUoCmu-DrMzY42oY7MrUb--sZXovtx7D_ecezhZ1odgACGQd8PRaFyWAwQQGGCAECLsIusgyGSBKWaX_-brrFfXG5BKJIjyTnZfvofYFEsXd_lilS_Cp4v5IjrrTePDPn_QtbN5GuaHxu_8d1pWs8dc720-LZezm-xqrbe16517N3t9Gi9HL8V0_jwZDaeFIUA0hebGAkmIIBhSg7E21AKcDEjKKDa24pAIiqTDTFYaIUlNRYnkaA0cgxjibjZpdW3QG3WIfqfjlwraq18gxDelY-PN1qnKMguB1RRQSzTkQmCEDTCWWgQJp0nrttU6xPBxdHWjNuEY98m-QoQSxgUVPF3h9srEUNfRrf--QqBOuas2d3XKXZ1zT6x-y_LOuT-GhIITIPEPJhh53A</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Wang, Lishu</creator><creator>Liu, Yanhui</creator><creator>Li, Tianshu</creator><creator>Xie, Xinze</creator><creator>Chang, Chengming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5972-2564</orcidid></search><sort><creationdate>2020</creationdate><title>Short-Term PV Power Prediction Based on Optimized VMD and LSTM</title><author>Wang, Lishu ; Liu, Yanhui ; Li, Tianshu ; Xie, Xinze ; Chang, Chengming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a7cd094484315c33ac5d0395795653cdb7148529e369ba2295cb54972f0e61313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Convergence</topic><topic>Decomposition</topic><topic>Fluctuations</topic><topic>Logic gates</topic><topic>LSTM</topic><topic>Mutual information</topic><topic>Optimization</topic><topic>parameter optimization</topic><topic>Parameters</topic><topic>Photovoltaic cells</topic><topic>photovoltaic power prediction</topic><topic>Power system</topic><topic>Predictive models</topic><topic>PSO</topic><topic>Trigonometric functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lishu</creatorcontrib><creatorcontrib>Liu, Yanhui</creatorcontrib><creatorcontrib>Li, Tianshu</creatorcontrib><creatorcontrib>Xie, Xinze</creatorcontrib><creatorcontrib>Chang, Chengming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (IEEE/IET Electronic Library - IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lishu</au><au>Liu, Yanhui</au><au>Li, Tianshu</au><au>Xie, Xinze</au><au>Chang, Chengming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short-Term PV Power Prediction Based on Optimized VMD and LSTM</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>165849</spage><epage>165862</epage><pages>165849-165862</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Because of intermittence and fluctuation of photovoltaic (PV) power, it is difficult to enhance prediction accuracy. To sustain high-efficient operation of power system, this paper proposes a hybrid method to predict the short-term PV power. It consists of components separation of PV power, parameters optimization and re-construction of prediction result. Firstly, the methods based on the identifying of feature frequency and mutual information maximum are proposed to optimize the mode number and penalty factor of VMD, respectively. The optimized VMD (OVMD) is used to decompose the complicated fluctuation components of PV power into single component. Then, the improved PSO (IPSO) based on non-linear inertia weight of anti-sine function is proposed to optimize the number of hidden layer nodes, learning rate and iteration number of LSTM network. The optimized LSTM is used to predict each single component of OVMD decomposition. Thirdly, the prediction result of each single component is re-constructed to obtain the final PV prediction power. The experiment result indicates that the prediction accuracy of the proposed method (OVMD-IPSO-LSTM) outperformances the other typical methods. By the improvement of the traditional method (VMD and PSO) and the parameter optimization of LSTM, this hybrid method makes a contribution to the prediction of short-term PV power.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3022246</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5972-2564</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.165849-165862
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9187409
source IEEE Open Access Journals
subjects Convergence
Decomposition
Fluctuations
Logic gates
LSTM
Mutual information
Optimization
parameter optimization
Parameters
Photovoltaic cells
photovoltaic power prediction
Power system
Predictive models
PSO
Trigonometric functions
title Short-Term PV Power Prediction Based on Optimized VMD and LSTM
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A35%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short-Term%20PV%20Power%20Prediction%20Based%20on%20Optimized%20VMD%20and%20LSTM&rft.jtitle=IEEE%20access&rft.au=Wang,%20Lishu&rft.date=2020&rft.volume=8&rft.spage=165849&rft.epage=165862&rft.pages=165849-165862&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3022246&rft_dat=%3Cproquest_ieee_%3E2454678587%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-a7cd094484315c33ac5d0395795653cdb7148529e369ba2295cb54972f0e61313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454678587&rft_id=info:pmid/&rft_ieee_id=9187409&rfr_iscdi=true