Loading…
Short-Term PV Power Prediction Based on Optimized VMD and LSTM
Because of intermittence and fluctuation of photovoltaic (PV) power, it is difficult to enhance prediction accuracy. To sustain high-efficient operation of power system, this paper proposes a hybrid method to predict the short-term PV power. It consists of components separation of PV power, paramete...
Saved in:
Published in: | IEEE access 2020, Vol.8, p.165849-165862 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-a7cd094484315c33ac5d0395795653cdb7148529e369ba2295cb54972f0e61313 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-a7cd094484315c33ac5d0395795653cdb7148529e369ba2295cb54972f0e61313 |
container_end_page | 165862 |
container_issue | |
container_start_page | 165849 |
container_title | IEEE access |
container_volume | 8 |
creator | Wang, Lishu Liu, Yanhui Li, Tianshu Xie, Xinze Chang, Chengming |
description | Because of intermittence and fluctuation of photovoltaic (PV) power, it is difficult to enhance prediction accuracy. To sustain high-efficient operation of power system, this paper proposes a hybrid method to predict the short-term PV power. It consists of components separation of PV power, parameters optimization and re-construction of prediction result. Firstly, the methods based on the identifying of feature frequency and mutual information maximum are proposed to optimize the mode number and penalty factor of VMD, respectively. The optimized VMD (OVMD) is used to decompose the complicated fluctuation components of PV power into single component. Then, the improved PSO (IPSO) based on non-linear inertia weight of anti-sine function is proposed to optimize the number of hidden layer nodes, learning rate and iteration number of LSTM network. The optimized LSTM is used to predict each single component of OVMD decomposition. Thirdly, the prediction result of each single component is re-constructed to obtain the final PV prediction power. The experiment result indicates that the prediction accuracy of the proposed method (OVMD-IPSO-LSTM) outperformances the other typical methods. By the improvement of the traditional method (VMD and PSO) and the parameter optimization of LSTM, this hybrid method makes a contribution to the prediction of short-term PV power. |
doi_str_mv | 10.1109/ACCESS.2020.3022246 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9187409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9187409</ieee_id><doaj_id>oai_doaj_org_article_bd6d10da505d4a1788323c0cd5d21475</doaj_id><sourcerecordid>2454678587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a7cd094484315c33ac5d0395795653cdb7148529e369ba2295cb54972f0e61313</originalsourceid><addsrcrecordid>eNpNUF1LAkEUXaIgMX-BLws9r833x0tgZiUoCmu-DrMzY42oY7MrUb--sZXovtx7D_ecezhZ1odgACGQd8PRaFyWAwQQGGCAECLsIusgyGSBKWaX_-brrFfXG5BKJIjyTnZfvofYFEsXd_lilS_Cp4v5IjrrTePDPn_QtbN5GuaHxu_8d1pWs8dc720-LZezm-xqrbe16517N3t9Gi9HL8V0_jwZDaeFIUA0hebGAkmIIBhSg7E21AKcDEjKKDa24pAIiqTDTFYaIUlNRYnkaA0cgxjibjZpdW3QG3WIfqfjlwraq18gxDelY-PN1qnKMguB1RRQSzTkQmCEDTCWWgQJp0nrttU6xPBxdHWjNuEY98m-QoQSxgUVPF3h9srEUNfRrf--QqBOuas2d3XKXZ1zT6x-y_LOuT-GhIITIPEPJhh53A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454678587</pqid></control><display><type>article</type><title>Short-Term PV Power Prediction Based on Optimized VMD and LSTM</title><source>IEEE Open Access Journals</source><creator>Wang, Lishu ; Liu, Yanhui ; Li, Tianshu ; Xie, Xinze ; Chang, Chengming</creator><creatorcontrib>Wang, Lishu ; Liu, Yanhui ; Li, Tianshu ; Xie, Xinze ; Chang, Chengming</creatorcontrib><description>Because of intermittence and fluctuation of photovoltaic (PV) power, it is difficult to enhance prediction accuracy. To sustain high-efficient operation of power system, this paper proposes a hybrid method to predict the short-term PV power. It consists of components separation of PV power, parameters optimization and re-construction of prediction result. Firstly, the methods based on the identifying of feature frequency and mutual information maximum are proposed to optimize the mode number and penalty factor of VMD, respectively. The optimized VMD (OVMD) is used to decompose the complicated fluctuation components of PV power into single component. Then, the improved PSO (IPSO) based on non-linear inertia weight of anti-sine function is proposed to optimize the number of hidden layer nodes, learning rate and iteration number of LSTM network. The optimized LSTM is used to predict each single component of OVMD decomposition. Thirdly, the prediction result of each single component is re-constructed to obtain the final PV prediction power. The experiment result indicates that the prediction accuracy of the proposed method (OVMD-IPSO-LSTM) outperformances the other typical methods. By the improvement of the traditional method (VMD and PSO) and the parameter optimization of LSTM, this hybrid method makes a contribution to the prediction of short-term PV power.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3022246</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Convergence ; Decomposition ; Fluctuations ; Logic gates ; LSTM ; Mutual information ; Optimization ; parameter optimization ; Parameters ; Photovoltaic cells ; photovoltaic power prediction ; Power system ; Predictive models ; PSO ; Trigonometric functions</subject><ispartof>IEEE access, 2020, Vol.8, p.165849-165862</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a7cd094484315c33ac5d0395795653cdb7148529e369ba2295cb54972f0e61313</citedby><cites>FETCH-LOGICAL-c408t-a7cd094484315c33ac5d0395795653cdb7148529e369ba2295cb54972f0e61313</cites><orcidid>0000-0002-5972-2564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9187409$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Wang, Lishu</creatorcontrib><creatorcontrib>Liu, Yanhui</creatorcontrib><creatorcontrib>Li, Tianshu</creatorcontrib><creatorcontrib>Xie, Xinze</creatorcontrib><creatorcontrib>Chang, Chengming</creatorcontrib><title>Short-Term PV Power Prediction Based on Optimized VMD and LSTM</title><title>IEEE access</title><addtitle>Access</addtitle><description>Because of intermittence and fluctuation of photovoltaic (PV) power, it is difficult to enhance prediction accuracy. To sustain high-efficient operation of power system, this paper proposes a hybrid method to predict the short-term PV power. It consists of components separation of PV power, parameters optimization and re-construction of prediction result. Firstly, the methods based on the identifying of feature frequency and mutual information maximum are proposed to optimize the mode number and penalty factor of VMD, respectively. The optimized VMD (OVMD) is used to decompose the complicated fluctuation components of PV power into single component. Then, the improved PSO (IPSO) based on non-linear inertia weight of anti-sine function is proposed to optimize the number of hidden layer nodes, learning rate and iteration number of LSTM network. The optimized LSTM is used to predict each single component of OVMD decomposition. Thirdly, the prediction result of each single component is re-constructed to obtain the final PV prediction power. The experiment result indicates that the prediction accuracy of the proposed method (OVMD-IPSO-LSTM) outperformances the other typical methods. By the improvement of the traditional method (VMD and PSO) and the parameter optimization of LSTM, this hybrid method makes a contribution to the prediction of short-term PV power.</description><subject>Convergence</subject><subject>Decomposition</subject><subject>Fluctuations</subject><subject>Logic gates</subject><subject>LSTM</subject><subject>Mutual information</subject><subject>Optimization</subject><subject>parameter optimization</subject><subject>Parameters</subject><subject>Photovoltaic cells</subject><subject>photovoltaic power prediction</subject><subject>Power system</subject><subject>Predictive models</subject><subject>PSO</subject><subject>Trigonometric functions</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUF1LAkEUXaIgMX-BLws9r833x0tgZiUoCmu-DrMzY42oY7MrUb--sZXovtx7D_ecezhZ1odgACGQd8PRaFyWAwQQGGCAECLsIusgyGSBKWaX_-brrFfXG5BKJIjyTnZfvofYFEsXd_lilS_Cp4v5IjrrTePDPn_QtbN5GuaHxu_8d1pWs8dc720-LZezm-xqrbe16517N3t9Gi9HL8V0_jwZDaeFIUA0hebGAkmIIBhSg7E21AKcDEjKKDa24pAIiqTDTFYaIUlNRYnkaA0cgxjibjZpdW3QG3WIfqfjlwraq18gxDelY-PN1qnKMguB1RRQSzTkQmCEDTCWWgQJp0nrttU6xPBxdHWjNuEY98m-QoQSxgUVPF3h9srEUNfRrf--QqBOuas2d3XKXZ1zT6x-y_LOuT-GhIITIPEPJhh53A</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Wang, Lishu</creator><creator>Liu, Yanhui</creator><creator>Li, Tianshu</creator><creator>Xie, Xinze</creator><creator>Chang, Chengming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5972-2564</orcidid></search><sort><creationdate>2020</creationdate><title>Short-Term PV Power Prediction Based on Optimized VMD and LSTM</title><author>Wang, Lishu ; Liu, Yanhui ; Li, Tianshu ; Xie, Xinze ; Chang, Chengming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a7cd094484315c33ac5d0395795653cdb7148529e369ba2295cb54972f0e61313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Convergence</topic><topic>Decomposition</topic><topic>Fluctuations</topic><topic>Logic gates</topic><topic>LSTM</topic><topic>Mutual information</topic><topic>Optimization</topic><topic>parameter optimization</topic><topic>Parameters</topic><topic>Photovoltaic cells</topic><topic>photovoltaic power prediction</topic><topic>Power system</topic><topic>Predictive models</topic><topic>PSO</topic><topic>Trigonometric functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lishu</creatorcontrib><creatorcontrib>Liu, Yanhui</creatorcontrib><creatorcontrib>Li, Tianshu</creatorcontrib><creatorcontrib>Xie, Xinze</creatorcontrib><creatorcontrib>Chang, Chengming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (IEEE/IET Electronic Library - IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lishu</au><au>Liu, Yanhui</au><au>Li, Tianshu</au><au>Xie, Xinze</au><au>Chang, Chengming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short-Term PV Power Prediction Based on Optimized VMD and LSTM</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>165849</spage><epage>165862</epage><pages>165849-165862</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Because of intermittence and fluctuation of photovoltaic (PV) power, it is difficult to enhance prediction accuracy. To sustain high-efficient operation of power system, this paper proposes a hybrid method to predict the short-term PV power. It consists of components separation of PV power, parameters optimization and re-construction of prediction result. Firstly, the methods based on the identifying of feature frequency and mutual information maximum are proposed to optimize the mode number and penalty factor of VMD, respectively. The optimized VMD (OVMD) is used to decompose the complicated fluctuation components of PV power into single component. Then, the improved PSO (IPSO) based on non-linear inertia weight of anti-sine function is proposed to optimize the number of hidden layer nodes, learning rate and iteration number of LSTM network. The optimized LSTM is used to predict each single component of OVMD decomposition. Thirdly, the prediction result of each single component is re-constructed to obtain the final PV prediction power. The experiment result indicates that the prediction accuracy of the proposed method (OVMD-IPSO-LSTM) outperformances the other typical methods. By the improvement of the traditional method (VMD and PSO) and the parameter optimization of LSTM, this hybrid method makes a contribution to the prediction of short-term PV power.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3022246</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5972-2564</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.165849-165862 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9187409 |
source | IEEE Open Access Journals |
subjects | Convergence Decomposition Fluctuations Logic gates LSTM Mutual information Optimization parameter optimization Parameters Photovoltaic cells photovoltaic power prediction Power system Predictive models PSO Trigonometric functions |
title | Short-Term PV Power Prediction Based on Optimized VMD and LSTM |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A35%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short-Term%20PV%20Power%20Prediction%20Based%20on%20Optimized%20VMD%20and%20LSTM&rft.jtitle=IEEE%20access&rft.au=Wang,%20Lishu&rft.date=2020&rft.volume=8&rft.spage=165849&rft.epage=165862&rft.pages=165849-165862&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3022246&rft_dat=%3Cproquest_ieee_%3E2454678587%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-a7cd094484315c33ac5d0395795653cdb7148529e369ba2295cb54972f0e61313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454678587&rft_id=info:pmid/&rft_ieee_id=9187409&rfr_iscdi=true |