Loading…

Low Temperature SoIC Bonding and Stacking Technology for 12-/16-Hi High Bandwidth Memory (HBM)

A low temperature system-on-integrated-chip (SoIC) bonding and stacking technology is proposed and implemented for 3-D memory integration, such as 3-D static random access memory (SRAM) or dynamic random access memory (DRAM) cube. It extends not only 2-D pin count to 12000/mm 2 but also overcomes th...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2020-12, Vol.67 (12), p.5343-5348
Main Authors: Chen, M. F., Tsai, C. H., Ku, Terry, Chiou, W. C., Wang, C. T., Yu, Douglas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c357t-86458031fb50af18a24d5e28f7e2218bf41d3f37ef0c77f42c9030f59e6aae183
cites cdi_FETCH-LOGICAL-c357t-86458031fb50af18a24d5e28f7e2218bf41d3f37ef0c77f42c9030f59e6aae183
container_end_page 5348
container_issue 12
container_start_page 5343
container_title IEEE transactions on electron devices
container_volume 67
creator Chen, M. F.
Tsai, C. H.
Ku, Terry
Chiou, W. C.
Wang, C. T.
Yu, Douglas
description A low temperature system-on-integrated-chip (SoIC) bonding and stacking technology is proposed and implemented for 3-D memory integration, such as 3-D static random access memory (SRAM) or dynamic random access memory (DRAM) cube. It extends not only 2-D pin count to 12000/mm 2 but also overcomes the obstacle of the stacking height. 4-Hi, 8-Hi, and 12-Hi stacks, each with 1 base die and 4, 8, and 12 dies, respectively, are realized and demonstrated in this article. The daisy chains in the 4-Hi/8-Hi/12-Hi structures incorporating over 10 000 through silicon vias (TSVs) and bonds are tested with liner {I}-{V} curves, which indicates the good bonding and stacking quality. The electrical link from base controller to top DRAM for 12-Hi and 16-Hi high bandwidth memory (HBM) structure is built up to study the bandwidth (BW) and power efficiency. Compared to \mu bump technology, the BW for the 12-Hi and 16-Hi structures using SoIC bonding shows the improvement of 18% and 20%, respectively, under same pin pitch and the power efficiency has the improvement of 8% and 15%. For thermal performance, the 12-Hi and 16-Hi SoIC-bond structure is 7% and 8% better than those using \mu bump technology, respectively. With this innovative SoIC bonding and stacking technology, the bond pitch is scalable to sub-micrometer and the die thickness is manageable to be thinner, which are prospected for the application of higher BW 3-D memory with tera byte (TB)/s per stack.
doi_str_mv 10.1109/TED.2020.3021358
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9195779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9195779</ieee_id><sourcerecordid>2465436379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-86458031fb50af18a24d5e28f7e2218bf41d3f37ef0c77f42c9030f59e6aae183</originalsourceid><addsrcrecordid>eNo9kE1PAjEURRujiYjuTdw0caOLgX5O26UgCgnEBePWpsy8wqBMsTOE8O8dAnH1cpNz70sOQveU9Cglpp-NXnuMMNLjhFEu9QXqUClVYlKRXqIOIVQnhmt-jW7qet3GVAjWQV_TsMcZbLYQXbOLgOdhMsSDUBVltcSuKvC8cfn3MWSQr6rwE5YH7EPElCV9mibjEo_L5QoPWnZfFs0Kz2AT4gE_jQez51t05d1PDXfn20Wfb6NsOE6mH--T4cs0yblUTaJTITXh1C8kcZ5qx0QhgWmvgDGqF17QgnuuwJNcKS9YbggnXhpInQOqeRc9nna3MfzuoG7sOuxi1b60TKRS8JQr01LkROUx1HUEb7ex3Lh4sJTYo0XbWrRHi_Zssa08nColAPzjhhqp2sE_4oxqow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465436379</pqid></control><display><type>article</type><title>Low Temperature SoIC Bonding and Stacking Technology for 12-/16-Hi High Bandwidth Memory (HBM)</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chen, M. F. ; Tsai, C. H. ; Ku, Terry ; Chiou, W. C. ; Wang, C. T. ; Yu, Douglas</creator><creatorcontrib>Chen, M. F. ; Tsai, C. H. ; Ku, Terry ; Chiou, W. C. ; Wang, C. T. ; Yu, Douglas</creatorcontrib><description><![CDATA[A low temperature system-on-integrated-chip (SoIC) bonding and stacking technology is proposed and implemented for 3-D memory integration, such as 3-D static random access memory (SRAM) or dynamic random access memory (DRAM) cube. It extends not only 2-D pin count to 12000/mm 2 but also overcomes the obstacle of the stacking height. 4-Hi, 8-Hi, and 12-Hi stacks, each with 1 base die and 4, 8, and 12 dies, respectively, are realized and demonstrated in this article. The daisy chains in the 4-Hi/8-Hi/12-Hi structures incorporating over 10 000 through silicon vias (TSVs) and bonds are tested with liner <inline-formula> <tex-math notation="LaTeX">{I}-{V} </tex-math></inline-formula> curves, which indicates the good bonding and stacking quality. The electrical link from base controller to top DRAM for 12-Hi and 16-Hi high bandwidth memory (HBM) structure is built up to study the bandwidth (BW) and power efficiency. Compared to <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>bump technology, the BW for the 12-Hi and 16-Hi structures using SoIC bonding shows the improvement of 18% and 20%, respectively, under same pin pitch and the power efficiency has the improvement of 8% and 15%. For thermal performance, the 12-Hi and 16-Hi SoIC-bond structure is 7% and 8% better than those using <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>bump technology, respectively. With this innovative SoIC bonding and stacking technology, the bond pitch is scalable to sub-micrometer and the die thickness is manageable to be thinner, which are prospected for the application of higher BW 3-D memory with tera byte (TB)/s per stack.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2020.3021358</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3DIC ; Bandwidth ; Bandwidths ; Bonding ; Dynamic random access memory ; dynamic random access memory (DRAM) ; high bandwidth memory (HBM) ; Integrated circuits ; Interconnections ; Low temperature ; Moore’s law ; Power efficiency ; Random access memory ; Resistance ; Stacking ; Static random access memory ; static random access memory (SRAM) ; system scaling ; system-on-integrated-chip (SoIC) ; Temperature measurement ; Through-silicon vias ; wafer level system integration (WLSI)</subject><ispartof>IEEE transactions on electron devices, 2020-12, Vol.67 (12), p.5343-5348</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-86458031fb50af18a24d5e28f7e2218bf41d3f37ef0c77f42c9030f59e6aae183</citedby><cites>FETCH-LOGICAL-c357t-86458031fb50af18a24d5e28f7e2218bf41d3f37ef0c77f42c9030f59e6aae183</cites><orcidid>0000-0002-6917-0740 ; 0000-0003-2239-8227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9195779$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Chen, M. F.</creatorcontrib><creatorcontrib>Tsai, C. H.</creatorcontrib><creatorcontrib>Ku, Terry</creatorcontrib><creatorcontrib>Chiou, W. C.</creatorcontrib><creatorcontrib>Wang, C. T.</creatorcontrib><creatorcontrib>Yu, Douglas</creatorcontrib><title>Low Temperature SoIC Bonding and Stacking Technology for 12-/16-Hi High Bandwidth Memory (HBM)</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[A low temperature system-on-integrated-chip (SoIC) bonding and stacking technology is proposed and implemented for 3-D memory integration, such as 3-D static random access memory (SRAM) or dynamic random access memory (DRAM) cube. It extends not only 2-D pin count to 12000/mm 2 but also overcomes the obstacle of the stacking height. 4-Hi, 8-Hi, and 12-Hi stacks, each with 1 base die and 4, 8, and 12 dies, respectively, are realized and demonstrated in this article. The daisy chains in the 4-Hi/8-Hi/12-Hi structures incorporating over 10 000 through silicon vias (TSVs) and bonds are tested with liner <inline-formula> <tex-math notation="LaTeX">{I}-{V} </tex-math></inline-formula> curves, which indicates the good bonding and stacking quality. The electrical link from base controller to top DRAM for 12-Hi and 16-Hi high bandwidth memory (HBM) structure is built up to study the bandwidth (BW) and power efficiency. Compared to <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>bump technology, the BW for the 12-Hi and 16-Hi structures using SoIC bonding shows the improvement of 18% and 20%, respectively, under same pin pitch and the power efficiency has the improvement of 8% and 15%. For thermal performance, the 12-Hi and 16-Hi SoIC-bond structure is 7% and 8% better than those using <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>bump technology, respectively. With this innovative SoIC bonding and stacking technology, the bond pitch is scalable to sub-micrometer and the die thickness is manageable to be thinner, which are prospected for the application of higher BW 3-D memory with tera byte (TB)/s per stack.]]></description><subject>3DIC</subject><subject>Bandwidth</subject><subject>Bandwidths</subject><subject>Bonding</subject><subject>Dynamic random access memory</subject><subject>dynamic random access memory (DRAM)</subject><subject>high bandwidth memory (HBM)</subject><subject>Integrated circuits</subject><subject>Interconnections</subject><subject>Low temperature</subject><subject>Moore’s law</subject><subject>Power efficiency</subject><subject>Random access memory</subject><subject>Resistance</subject><subject>Stacking</subject><subject>Static random access memory</subject><subject>static random access memory (SRAM)</subject><subject>system scaling</subject><subject>system-on-integrated-chip (SoIC)</subject><subject>Temperature measurement</subject><subject>Through-silicon vias</subject><subject>wafer level system integration (WLSI)</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PAjEURRujiYjuTdw0caOLgX5O26UgCgnEBePWpsy8wqBMsTOE8O8dAnH1cpNz70sOQveU9Cglpp-NXnuMMNLjhFEu9QXqUClVYlKRXqIOIVQnhmt-jW7qet3GVAjWQV_TsMcZbLYQXbOLgOdhMsSDUBVltcSuKvC8cfn3MWSQr6rwE5YH7EPElCV9mibjEo_L5QoPWnZfFs0Kz2AT4gE_jQez51t05d1PDXfn20Wfb6NsOE6mH--T4cs0yblUTaJTITXh1C8kcZ5qx0QhgWmvgDGqF17QgnuuwJNcKS9YbggnXhpInQOqeRc9nna3MfzuoG7sOuxi1b60TKRS8JQr01LkROUx1HUEb7ex3Lh4sJTYo0XbWrRHi_Zssa08nColAPzjhhqp2sE_4oxqow</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Chen, M. F.</creator><creator>Tsai, C. H.</creator><creator>Ku, Terry</creator><creator>Chiou, W. C.</creator><creator>Wang, C. T.</creator><creator>Yu, Douglas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6917-0740</orcidid><orcidid>https://orcid.org/0000-0003-2239-8227</orcidid></search><sort><creationdate>20201201</creationdate><title>Low Temperature SoIC Bonding and Stacking Technology for 12-/16-Hi High Bandwidth Memory (HBM)</title><author>Chen, M. F. ; Tsai, C. H. ; Ku, Terry ; Chiou, W. C. ; Wang, C. T. ; Yu, Douglas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-86458031fb50af18a24d5e28f7e2218bf41d3f37ef0c77f42c9030f59e6aae183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3DIC</topic><topic>Bandwidth</topic><topic>Bandwidths</topic><topic>Bonding</topic><topic>Dynamic random access memory</topic><topic>dynamic random access memory (DRAM)</topic><topic>high bandwidth memory (HBM)</topic><topic>Integrated circuits</topic><topic>Interconnections</topic><topic>Low temperature</topic><topic>Moore’s law</topic><topic>Power efficiency</topic><topic>Random access memory</topic><topic>Resistance</topic><topic>Stacking</topic><topic>Static random access memory</topic><topic>static random access memory (SRAM)</topic><topic>system scaling</topic><topic>system-on-integrated-chip (SoIC)</topic><topic>Temperature measurement</topic><topic>Through-silicon vias</topic><topic>wafer level system integration (WLSI)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, M. F.</creatorcontrib><creatorcontrib>Tsai, C. H.</creatorcontrib><creatorcontrib>Ku, Terry</creatorcontrib><creatorcontrib>Chiou, W. C.</creatorcontrib><creatorcontrib>Wang, C. T.</creatorcontrib><creatorcontrib>Yu, Douglas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, M. F.</au><au>Tsai, C. H.</au><au>Ku, Terry</au><au>Chiou, W. C.</au><au>Wang, C. T.</au><au>Yu, Douglas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low Temperature SoIC Bonding and Stacking Technology for 12-/16-Hi High Bandwidth Memory (HBM)</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>67</volume><issue>12</issue><spage>5343</spage><epage>5348</epage><pages>5343-5348</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[A low temperature system-on-integrated-chip (SoIC) bonding and stacking technology is proposed and implemented for 3-D memory integration, such as 3-D static random access memory (SRAM) or dynamic random access memory (DRAM) cube. It extends not only 2-D pin count to 12000/mm 2 but also overcomes the obstacle of the stacking height. 4-Hi, 8-Hi, and 12-Hi stacks, each with 1 base die and 4, 8, and 12 dies, respectively, are realized and demonstrated in this article. The daisy chains in the 4-Hi/8-Hi/12-Hi structures incorporating over 10 000 through silicon vias (TSVs) and bonds are tested with liner <inline-formula> <tex-math notation="LaTeX">{I}-{V} </tex-math></inline-formula> curves, which indicates the good bonding and stacking quality. The electrical link from base controller to top DRAM for 12-Hi and 16-Hi high bandwidth memory (HBM) structure is built up to study the bandwidth (BW) and power efficiency. Compared to <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>bump technology, the BW for the 12-Hi and 16-Hi structures using SoIC bonding shows the improvement of 18% and 20%, respectively, under same pin pitch and the power efficiency has the improvement of 8% and 15%. For thermal performance, the 12-Hi and 16-Hi SoIC-bond structure is 7% and 8% better than those using <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>bump technology, respectively. With this innovative SoIC bonding and stacking technology, the bond pitch is scalable to sub-micrometer and the die thickness is manageable to be thinner, which are prospected for the application of higher BW 3-D memory with tera byte (TB)/s per stack.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2020.3021358</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6917-0740</orcidid><orcidid>https://orcid.org/0000-0003-2239-8227</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2020-12, Vol.67 (12), p.5343-5348
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_9195779
source IEEE Electronic Library (IEL) Journals
subjects 3DIC
Bandwidth
Bandwidths
Bonding
Dynamic random access memory
dynamic random access memory (DRAM)
high bandwidth memory (HBM)
Integrated circuits
Interconnections
Low temperature
Moore’s law
Power efficiency
Random access memory
Resistance
Stacking
Static random access memory
static random access memory (SRAM)
system scaling
system-on-integrated-chip (SoIC)
Temperature measurement
Through-silicon vias
wafer level system integration (WLSI)
title Low Temperature SoIC Bonding and Stacking Technology for 12-/16-Hi High Bandwidth Memory (HBM)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A32%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20Temperature%20SoIC%20Bonding%20and%20Stacking%20Technology%20for%2012-/16-Hi%20High%20Bandwidth%20Memory%20(HBM)&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Chen,%20M.%20F.&rft.date=2020-12-01&rft.volume=67&rft.issue=12&rft.spage=5343&rft.epage=5348&rft.pages=5343-5348&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2020.3021358&rft_dat=%3Cproquest_ieee_%3E2465436379%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-86458031fb50af18a24d5e28f7e2218bf41d3f37ef0c77f42c9030f59e6aae183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2465436379&rft_id=info:pmid/&rft_ieee_id=9195779&rfr_iscdi=true