Loading…
Low Temperature SoIC Bonding and Stacking Technology for 12-/16-Hi High Bandwidth Memory (HBM)
A low temperature system-on-integrated-chip (SoIC) bonding and stacking technology is proposed and implemented for 3-D memory integration, such as 3-D static random access memory (SRAM) or dynamic random access memory (DRAM) cube. It extends not only 2-D pin count to 12000/mm 2 but also overcomes th...
Saved in:
Published in: | IEEE transactions on electron devices 2020-12, Vol.67 (12), p.5343-5348 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c357t-86458031fb50af18a24d5e28f7e2218bf41d3f37ef0c77f42c9030f59e6aae183 |
---|---|
cites | cdi_FETCH-LOGICAL-c357t-86458031fb50af18a24d5e28f7e2218bf41d3f37ef0c77f42c9030f59e6aae183 |
container_end_page | 5348 |
container_issue | 12 |
container_start_page | 5343 |
container_title | IEEE transactions on electron devices |
container_volume | 67 |
creator | Chen, M. F. Tsai, C. H. Ku, Terry Chiou, W. C. Wang, C. T. Yu, Douglas |
description | A low temperature system-on-integrated-chip (SoIC) bonding and stacking technology is proposed and implemented for 3-D memory integration, such as 3-D static random access memory (SRAM) or dynamic random access memory (DRAM) cube. It extends not only 2-D pin count to 12000/mm 2 but also overcomes the obstacle of the stacking height. 4-Hi, 8-Hi, and 12-Hi stacks, each with 1 base die and 4, 8, and 12 dies, respectively, are realized and demonstrated in this article. The daisy chains in the 4-Hi/8-Hi/12-Hi structures incorporating over 10 000 through silicon vias (TSVs) and bonds are tested with liner {I}-{V} curves, which indicates the good bonding and stacking quality. The electrical link from base controller to top DRAM for 12-Hi and 16-Hi high bandwidth memory (HBM) structure is built up to study the bandwidth (BW) and power efficiency. Compared to \mu bump technology, the BW for the 12-Hi and 16-Hi structures using SoIC bonding shows the improvement of 18% and 20%, respectively, under same pin pitch and the power efficiency has the improvement of 8% and 15%. For thermal performance, the 12-Hi and 16-Hi SoIC-bond structure is 7% and 8% better than those using \mu bump technology, respectively. With this innovative SoIC bonding and stacking technology, the bond pitch is scalable to sub-micrometer and the die thickness is manageable to be thinner, which are prospected for the application of higher BW 3-D memory with tera byte (TB)/s per stack. |
doi_str_mv | 10.1109/TED.2020.3021358 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9195779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9195779</ieee_id><sourcerecordid>2465436379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-86458031fb50af18a24d5e28f7e2218bf41d3f37ef0c77f42c9030f59e6aae183</originalsourceid><addsrcrecordid>eNo9kE1PAjEURRujiYjuTdw0caOLgX5O26UgCgnEBePWpsy8wqBMsTOE8O8dAnH1cpNz70sOQveU9Cglpp-NXnuMMNLjhFEu9QXqUClVYlKRXqIOIVQnhmt-jW7qet3GVAjWQV_TsMcZbLYQXbOLgOdhMsSDUBVltcSuKvC8cfn3MWSQr6rwE5YH7EPElCV9mibjEo_L5QoPWnZfFs0Kz2AT4gE_jQez51t05d1PDXfn20Wfb6NsOE6mH--T4cs0yblUTaJTITXh1C8kcZ5qx0QhgWmvgDGqF17QgnuuwJNcKS9YbggnXhpInQOqeRc9nna3MfzuoG7sOuxi1b60TKRS8JQr01LkROUx1HUEb7ex3Lh4sJTYo0XbWrRHi_Zssa08nColAPzjhhqp2sE_4oxqow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465436379</pqid></control><display><type>article</type><title>Low Temperature SoIC Bonding and Stacking Technology for 12-/16-Hi High Bandwidth Memory (HBM)</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chen, M. F. ; Tsai, C. H. ; Ku, Terry ; Chiou, W. C. ; Wang, C. T. ; Yu, Douglas</creator><creatorcontrib>Chen, M. F. ; Tsai, C. H. ; Ku, Terry ; Chiou, W. C. ; Wang, C. T. ; Yu, Douglas</creatorcontrib><description><![CDATA[A low temperature system-on-integrated-chip (SoIC) bonding and stacking technology is proposed and implemented for 3-D memory integration, such as 3-D static random access memory (SRAM) or dynamic random access memory (DRAM) cube. It extends not only 2-D pin count to 12000/mm 2 but also overcomes the obstacle of the stacking height. 4-Hi, 8-Hi, and 12-Hi stacks, each with 1 base die and 4, 8, and 12 dies, respectively, are realized and demonstrated in this article. The daisy chains in the 4-Hi/8-Hi/12-Hi structures incorporating over 10 000 through silicon vias (TSVs) and bonds are tested with liner <inline-formula> <tex-math notation="LaTeX">{I}-{V} </tex-math></inline-formula> curves, which indicates the good bonding and stacking quality. The electrical link from base controller to top DRAM for 12-Hi and 16-Hi high bandwidth memory (HBM) structure is built up to study the bandwidth (BW) and power efficiency. Compared to <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>bump technology, the BW for the 12-Hi and 16-Hi structures using SoIC bonding shows the improvement of 18% and 20%, respectively, under same pin pitch and the power efficiency has the improvement of 8% and 15%. For thermal performance, the 12-Hi and 16-Hi SoIC-bond structure is 7% and 8% better than those using <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>bump technology, respectively. With this innovative SoIC bonding and stacking technology, the bond pitch is scalable to sub-micrometer and the die thickness is manageable to be thinner, which are prospected for the application of higher BW 3-D memory with tera byte (TB)/s per stack.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2020.3021358</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3DIC ; Bandwidth ; Bandwidths ; Bonding ; Dynamic random access memory ; dynamic random access memory (DRAM) ; high bandwidth memory (HBM) ; Integrated circuits ; Interconnections ; Low temperature ; Moore’s law ; Power efficiency ; Random access memory ; Resistance ; Stacking ; Static random access memory ; static random access memory (SRAM) ; system scaling ; system-on-integrated-chip (SoIC) ; Temperature measurement ; Through-silicon vias ; wafer level system integration (WLSI)</subject><ispartof>IEEE transactions on electron devices, 2020-12, Vol.67 (12), p.5343-5348</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-86458031fb50af18a24d5e28f7e2218bf41d3f37ef0c77f42c9030f59e6aae183</citedby><cites>FETCH-LOGICAL-c357t-86458031fb50af18a24d5e28f7e2218bf41d3f37ef0c77f42c9030f59e6aae183</cites><orcidid>0000-0002-6917-0740 ; 0000-0003-2239-8227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9195779$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Chen, M. F.</creatorcontrib><creatorcontrib>Tsai, C. H.</creatorcontrib><creatorcontrib>Ku, Terry</creatorcontrib><creatorcontrib>Chiou, W. C.</creatorcontrib><creatorcontrib>Wang, C. T.</creatorcontrib><creatorcontrib>Yu, Douglas</creatorcontrib><title>Low Temperature SoIC Bonding and Stacking Technology for 12-/16-Hi High Bandwidth Memory (HBM)</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[A low temperature system-on-integrated-chip (SoIC) bonding and stacking technology is proposed and implemented for 3-D memory integration, such as 3-D static random access memory (SRAM) or dynamic random access memory (DRAM) cube. It extends not only 2-D pin count to 12000/mm 2 but also overcomes the obstacle of the stacking height. 4-Hi, 8-Hi, and 12-Hi stacks, each with 1 base die and 4, 8, and 12 dies, respectively, are realized and demonstrated in this article. The daisy chains in the 4-Hi/8-Hi/12-Hi structures incorporating over 10 000 through silicon vias (TSVs) and bonds are tested with liner <inline-formula> <tex-math notation="LaTeX">{I}-{V} </tex-math></inline-formula> curves, which indicates the good bonding and stacking quality. The electrical link from base controller to top DRAM for 12-Hi and 16-Hi high bandwidth memory (HBM) structure is built up to study the bandwidth (BW) and power efficiency. Compared to <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>bump technology, the BW for the 12-Hi and 16-Hi structures using SoIC bonding shows the improvement of 18% and 20%, respectively, under same pin pitch and the power efficiency has the improvement of 8% and 15%. For thermal performance, the 12-Hi and 16-Hi SoIC-bond structure is 7% and 8% better than those using <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>bump technology, respectively. With this innovative SoIC bonding and stacking technology, the bond pitch is scalable to sub-micrometer and the die thickness is manageable to be thinner, which are prospected for the application of higher BW 3-D memory with tera byte (TB)/s per stack.]]></description><subject>3DIC</subject><subject>Bandwidth</subject><subject>Bandwidths</subject><subject>Bonding</subject><subject>Dynamic random access memory</subject><subject>dynamic random access memory (DRAM)</subject><subject>high bandwidth memory (HBM)</subject><subject>Integrated circuits</subject><subject>Interconnections</subject><subject>Low temperature</subject><subject>Moore’s law</subject><subject>Power efficiency</subject><subject>Random access memory</subject><subject>Resistance</subject><subject>Stacking</subject><subject>Static random access memory</subject><subject>static random access memory (SRAM)</subject><subject>system scaling</subject><subject>system-on-integrated-chip (SoIC)</subject><subject>Temperature measurement</subject><subject>Through-silicon vias</subject><subject>wafer level system integration (WLSI)</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PAjEURRujiYjuTdw0caOLgX5O26UgCgnEBePWpsy8wqBMsTOE8O8dAnH1cpNz70sOQveU9Cglpp-NXnuMMNLjhFEu9QXqUClVYlKRXqIOIVQnhmt-jW7qet3GVAjWQV_TsMcZbLYQXbOLgOdhMsSDUBVltcSuKvC8cfn3MWSQr6rwE5YH7EPElCV9mibjEo_L5QoPWnZfFs0Kz2AT4gE_jQez51t05d1PDXfn20Wfb6NsOE6mH--T4cs0yblUTaJTITXh1C8kcZ5qx0QhgWmvgDGqF17QgnuuwJNcKS9YbggnXhpInQOqeRc9nna3MfzuoG7sOuxi1b60TKRS8JQr01LkROUx1HUEb7ex3Lh4sJTYo0XbWrRHi_Zssa08nColAPzjhhqp2sE_4oxqow</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Chen, M. F.</creator><creator>Tsai, C. H.</creator><creator>Ku, Terry</creator><creator>Chiou, W. C.</creator><creator>Wang, C. T.</creator><creator>Yu, Douglas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6917-0740</orcidid><orcidid>https://orcid.org/0000-0003-2239-8227</orcidid></search><sort><creationdate>20201201</creationdate><title>Low Temperature SoIC Bonding and Stacking Technology for 12-/16-Hi High Bandwidth Memory (HBM)</title><author>Chen, M. F. ; Tsai, C. H. ; Ku, Terry ; Chiou, W. C. ; Wang, C. T. ; Yu, Douglas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-86458031fb50af18a24d5e28f7e2218bf41d3f37ef0c77f42c9030f59e6aae183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3DIC</topic><topic>Bandwidth</topic><topic>Bandwidths</topic><topic>Bonding</topic><topic>Dynamic random access memory</topic><topic>dynamic random access memory (DRAM)</topic><topic>high bandwidth memory (HBM)</topic><topic>Integrated circuits</topic><topic>Interconnections</topic><topic>Low temperature</topic><topic>Moore’s law</topic><topic>Power efficiency</topic><topic>Random access memory</topic><topic>Resistance</topic><topic>Stacking</topic><topic>Static random access memory</topic><topic>static random access memory (SRAM)</topic><topic>system scaling</topic><topic>system-on-integrated-chip (SoIC)</topic><topic>Temperature measurement</topic><topic>Through-silicon vias</topic><topic>wafer level system integration (WLSI)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, M. F.</creatorcontrib><creatorcontrib>Tsai, C. H.</creatorcontrib><creatorcontrib>Ku, Terry</creatorcontrib><creatorcontrib>Chiou, W. C.</creatorcontrib><creatorcontrib>Wang, C. T.</creatorcontrib><creatorcontrib>Yu, Douglas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, M. F.</au><au>Tsai, C. H.</au><au>Ku, Terry</au><au>Chiou, W. C.</au><au>Wang, C. T.</au><au>Yu, Douglas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low Temperature SoIC Bonding and Stacking Technology for 12-/16-Hi High Bandwidth Memory (HBM)</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>67</volume><issue>12</issue><spage>5343</spage><epage>5348</epage><pages>5343-5348</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[A low temperature system-on-integrated-chip (SoIC) bonding and stacking technology is proposed and implemented for 3-D memory integration, such as 3-D static random access memory (SRAM) or dynamic random access memory (DRAM) cube. It extends not only 2-D pin count to 12000/mm 2 but also overcomes the obstacle of the stacking height. 4-Hi, 8-Hi, and 12-Hi stacks, each with 1 base die and 4, 8, and 12 dies, respectively, are realized and demonstrated in this article. The daisy chains in the 4-Hi/8-Hi/12-Hi structures incorporating over 10 000 through silicon vias (TSVs) and bonds are tested with liner <inline-formula> <tex-math notation="LaTeX">{I}-{V} </tex-math></inline-formula> curves, which indicates the good bonding and stacking quality. The electrical link from base controller to top DRAM for 12-Hi and 16-Hi high bandwidth memory (HBM) structure is built up to study the bandwidth (BW) and power efficiency. Compared to <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>bump technology, the BW for the 12-Hi and 16-Hi structures using SoIC bonding shows the improvement of 18% and 20%, respectively, under same pin pitch and the power efficiency has the improvement of 8% and 15%. For thermal performance, the 12-Hi and 16-Hi SoIC-bond structure is 7% and 8% better than those using <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>bump technology, respectively. With this innovative SoIC bonding and stacking technology, the bond pitch is scalable to sub-micrometer and the die thickness is manageable to be thinner, which are prospected for the application of higher BW 3-D memory with tera byte (TB)/s per stack.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2020.3021358</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6917-0740</orcidid><orcidid>https://orcid.org/0000-0003-2239-8227</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2020-12, Vol.67 (12), p.5343-5348 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_ieee_primary_9195779 |
source | IEEE Electronic Library (IEL) Journals |
subjects | 3DIC Bandwidth Bandwidths Bonding Dynamic random access memory dynamic random access memory (DRAM) high bandwidth memory (HBM) Integrated circuits Interconnections Low temperature Moore’s law Power efficiency Random access memory Resistance Stacking Static random access memory static random access memory (SRAM) system scaling system-on-integrated-chip (SoIC) Temperature measurement Through-silicon vias wafer level system integration (WLSI) |
title | Low Temperature SoIC Bonding and Stacking Technology for 12-/16-Hi High Bandwidth Memory (HBM) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A32%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20Temperature%20SoIC%20Bonding%20and%20Stacking%20Technology%20for%2012-/16-Hi%20High%20Bandwidth%20Memory%20(HBM)&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Chen,%20M.%20F.&rft.date=2020-12-01&rft.volume=67&rft.issue=12&rft.spage=5343&rft.epage=5348&rft.pages=5343-5348&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2020.3021358&rft_dat=%3Cproquest_ieee_%3E2465436379%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-86458031fb50af18a24d5e28f7e2218bf41d3f37ef0c77f42c9030f59e6aae183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2465436379&rft_id=info:pmid/&rft_ieee_id=9195779&rfr_iscdi=true |