Loading…

Flydar: Magnetometer-based High Angular Rate Estimation during Gyro Saturation for SLAM

In this paper, the high angular rate estimation for simultaneous localisation and mapping (SLAM) of a Flying Li-DAR (Flydar) is presented. The proposed EKF-based algorithm exploits the sinusoidal magnetometer measurement generated by the continuously rotating airframe for estimation of the robot hov...

Full description

Saved in:
Bibliographic Details
Main Authors: Tan, Chee How, Sufiyan bin Shaiful, Danial, Tang, Emmanuel, Khaw, Jien-Yi, Soh, Gim Song, Foong, Shaohui
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 8537
container_issue
container_start_page 8532
container_title
container_volume
creator Tan, Chee How
Sufiyan bin Shaiful, Danial
Tang, Emmanuel
Khaw, Jien-Yi
Soh, Gim Song
Foong, Shaohui
description In this paper, the high angular rate estimation for simultaneous localisation and mapping (SLAM) of a Flying Li-DAR (Flydar) is presented. The proposed EKF-based algorithm exploits the sinusoidal magnetometer measurement generated by the continuously rotating airframe for estimation of the robot hovering angular velocity. Significantly, the proposed method does not rely on additional sensors other than existing IMU sensors already being used for flight stabilization. The gyro measurement and the gyro bias are incorporated as a control input and a filter state respectively to enable estimation even under gyro saturation condition. Additionally, this work proposes leveraging on the inherently rotating locomotion to generate a planar lidar scan using only a single-point laser for possible lightweight autonomy. The proposed estimation method was experimentally evaluated on a ground rotating rig up to twice the gyro saturation limit with an effective rms error of 0.0045Hz; and on the proposed aerial platform − Flydar − hovering beyond the saturation limit with a rms error of 0.0056Hz. Lastly, the proposed method for SLAM using the rotating dynamics of Flydar was demonstrated with a localisation accuracy of 0.11m.
doi_str_mv 10.1109/ICRA40945.2020.9197486
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9197486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9197486</ieee_id><sourcerecordid>9197486</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-2ed2ecd6c71ff7a659554fbed1f961c45d0dd9bdd520efeb360cfc43f4fd0aef3</originalsourceid><addsrcrecordid>eNotkMtKw0AYRkdBsK0-gSDzAqn_3DPuQukNWoRW0V2ZZP6JkTaRyWTRt1doVx-cxeHwEfLMYMoY2Jf1bFdIsFJNOXCYWmaNzPUNGTPDc2aEVeaWjLgyJoPcfN2Tcd__AIAQWo_I5-J49i6-0q2rW0zdCRPGrHQ9erpq6m9atPVwdJHuXEI671NzcqnpWuqH2LQ1XZ5jR_cuDfGCQxfpflNsH8hdcMceH687IR-L-ftslW3elutZsckaDiJlHD3HyuvKsBCM08oqJUOJngWrWSWVB-9t6b3igAFLoaEKlRRBBg8Og5iQp4u3QcTDb_zPi-fD9QTxB5qmU7E</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Flydar: Magnetometer-based High Angular Rate Estimation during Gyro Saturation for SLAM</title><source>IEEE Xplore All Conference Series</source><creator>Tan, Chee How ; Sufiyan bin Shaiful, Danial ; Tang, Emmanuel ; Khaw, Jien-Yi ; Soh, Gim Song ; Foong, Shaohui</creator><creatorcontrib>Tan, Chee How ; Sufiyan bin Shaiful, Danial ; Tang, Emmanuel ; Khaw, Jien-Yi ; Soh, Gim Song ; Foong, Shaohui</creatorcontrib><description>In this paper, the high angular rate estimation for simultaneous localisation and mapping (SLAM) of a Flying Li-DAR (Flydar) is presented. The proposed EKF-based algorithm exploits the sinusoidal magnetometer measurement generated by the continuously rotating airframe for estimation of the robot hovering angular velocity. Significantly, the proposed method does not rely on additional sensors other than existing IMU sensors already being used for flight stabilization. The gyro measurement and the gyro bias are incorporated as a control input and a filter state respectively to enable estimation even under gyro saturation condition. Additionally, this work proposes leveraging on the inherently rotating locomotion to generate a planar lidar scan using only a single-point laser for possible lightweight autonomy. The proposed estimation method was experimentally evaluated on a ground rotating rig up to twice the gyro saturation limit with an effective rms error of 0.0045Hz; and on the proposed aerial platform − Flydar − hovering beyond the saturation limit with a rms error of 0.0056Hz. Lastly, the proposed method for SLAM using the rotating dynamics of Flydar was demonstrated with a localisation accuracy of 0.11m.</description><identifier>EISSN: 2577-087X</identifier><identifier>EISBN: 1728173957</identifier><identifier>EISBN: 9781728173955</identifier><identifier>DOI: 10.1109/ICRA40945.2020.9197486</identifier><language>eng</language><publisher>IEEE</publisher><subject>Angular velocity ; Estimation ; Frequency measurement ; Magnetometers ; Robots ; Saturation magnetization ; Sensors</subject><ispartof>2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, p.8532-8537</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9197486$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9197486$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tan, Chee How</creatorcontrib><creatorcontrib>Sufiyan bin Shaiful, Danial</creatorcontrib><creatorcontrib>Tang, Emmanuel</creatorcontrib><creatorcontrib>Khaw, Jien-Yi</creatorcontrib><creatorcontrib>Soh, Gim Song</creatorcontrib><creatorcontrib>Foong, Shaohui</creatorcontrib><title>Flydar: Magnetometer-based High Angular Rate Estimation during Gyro Saturation for SLAM</title><title>2020 IEEE International Conference on Robotics and Automation (ICRA)</title><addtitle>ICRA</addtitle><description>In this paper, the high angular rate estimation for simultaneous localisation and mapping (SLAM) of a Flying Li-DAR (Flydar) is presented. The proposed EKF-based algorithm exploits the sinusoidal magnetometer measurement generated by the continuously rotating airframe for estimation of the robot hovering angular velocity. Significantly, the proposed method does not rely on additional sensors other than existing IMU sensors already being used for flight stabilization. The gyro measurement and the gyro bias are incorporated as a control input and a filter state respectively to enable estimation even under gyro saturation condition. Additionally, this work proposes leveraging on the inherently rotating locomotion to generate a planar lidar scan using only a single-point laser for possible lightweight autonomy. The proposed estimation method was experimentally evaluated on a ground rotating rig up to twice the gyro saturation limit with an effective rms error of 0.0045Hz; and on the proposed aerial platform − Flydar − hovering beyond the saturation limit with a rms error of 0.0056Hz. Lastly, the proposed method for SLAM using the rotating dynamics of Flydar was demonstrated with a localisation accuracy of 0.11m.</description><subject>Angular velocity</subject><subject>Estimation</subject><subject>Frequency measurement</subject><subject>Magnetometers</subject><subject>Robots</subject><subject>Saturation magnetization</subject><subject>Sensors</subject><issn>2577-087X</issn><isbn>1728173957</isbn><isbn>9781728173955</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtKw0AYRkdBsK0-gSDzAqn_3DPuQukNWoRW0V2ZZP6JkTaRyWTRt1doVx-cxeHwEfLMYMoY2Jf1bFdIsFJNOXCYWmaNzPUNGTPDc2aEVeaWjLgyJoPcfN2Tcd__AIAQWo_I5-J49i6-0q2rW0zdCRPGrHQ9erpq6m9atPVwdJHuXEI671NzcqnpWuqH2LQ1XZ5jR_cuDfGCQxfpflNsH8hdcMceH687IR-L-ftslW3elutZsckaDiJlHD3HyuvKsBCM08oqJUOJngWrWSWVB-9t6b3igAFLoaEKlRRBBg8Og5iQp4u3QcTDb_zPi-fD9QTxB5qmU7E</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Tan, Chee How</creator><creator>Sufiyan bin Shaiful, Danial</creator><creator>Tang, Emmanuel</creator><creator>Khaw, Jien-Yi</creator><creator>Soh, Gim Song</creator><creator>Foong, Shaohui</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>202005</creationdate><title>Flydar: Magnetometer-based High Angular Rate Estimation during Gyro Saturation for SLAM</title><author>Tan, Chee How ; Sufiyan bin Shaiful, Danial ; Tang, Emmanuel ; Khaw, Jien-Yi ; Soh, Gim Song ; Foong, Shaohui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-2ed2ecd6c71ff7a659554fbed1f961c45d0dd9bdd520efeb360cfc43f4fd0aef3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Angular velocity</topic><topic>Estimation</topic><topic>Frequency measurement</topic><topic>Magnetometers</topic><topic>Robots</topic><topic>Saturation magnetization</topic><topic>Sensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Tan, Chee How</creatorcontrib><creatorcontrib>Sufiyan bin Shaiful, Danial</creatorcontrib><creatorcontrib>Tang, Emmanuel</creatorcontrib><creatorcontrib>Khaw, Jien-Yi</creatorcontrib><creatorcontrib>Soh, Gim Song</creatorcontrib><creatorcontrib>Foong, Shaohui</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tan, Chee How</au><au>Sufiyan bin Shaiful, Danial</au><au>Tang, Emmanuel</au><au>Khaw, Jien-Yi</au><au>Soh, Gim Song</au><au>Foong, Shaohui</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Flydar: Magnetometer-based High Angular Rate Estimation during Gyro Saturation for SLAM</atitle><btitle>2020 IEEE International Conference on Robotics and Automation (ICRA)</btitle><stitle>ICRA</stitle><date>2020-05</date><risdate>2020</risdate><spage>8532</spage><epage>8537</epage><pages>8532-8537</pages><eissn>2577-087X</eissn><eisbn>1728173957</eisbn><eisbn>9781728173955</eisbn><abstract>In this paper, the high angular rate estimation for simultaneous localisation and mapping (SLAM) of a Flying Li-DAR (Flydar) is presented. The proposed EKF-based algorithm exploits the sinusoidal magnetometer measurement generated by the continuously rotating airframe for estimation of the robot hovering angular velocity. Significantly, the proposed method does not rely on additional sensors other than existing IMU sensors already being used for flight stabilization. The gyro measurement and the gyro bias are incorporated as a control input and a filter state respectively to enable estimation even under gyro saturation condition. Additionally, this work proposes leveraging on the inherently rotating locomotion to generate a planar lidar scan using only a single-point laser for possible lightweight autonomy. The proposed estimation method was experimentally evaluated on a ground rotating rig up to twice the gyro saturation limit with an effective rms error of 0.0045Hz; and on the proposed aerial platform − Flydar − hovering beyond the saturation limit with a rms error of 0.0056Hz. Lastly, the proposed method for SLAM using the rotating dynamics of Flydar was demonstrated with a localisation accuracy of 0.11m.</abstract><pub>IEEE</pub><doi>10.1109/ICRA40945.2020.9197486</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2577-087X
ispartof 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, p.8532-8537
issn 2577-087X
language eng
recordid cdi_ieee_primary_9197486
source IEEE Xplore All Conference Series
subjects Angular velocity
Estimation
Frequency measurement
Magnetometers
Robots
Saturation magnetization
Sensors
title Flydar: Magnetometer-based High Angular Rate Estimation during Gyro Saturation for SLAM
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A05%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Flydar:%20Magnetometer-based%20High%20Angular%20Rate%20Estimation%20during%20Gyro%20Saturation%20for%20SLAM&rft.btitle=2020%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation%20(ICRA)&rft.au=Tan,%20Chee%20How&rft.date=2020-05&rft.spage=8532&rft.epage=8537&rft.pages=8532-8537&rft.eissn=2577-087X&rft_id=info:doi/10.1109/ICRA40945.2020.9197486&rft.eisbn=1728173957&rft.eisbn_list=9781728173955&rft_dat=%3Cieee_CHZPO%3E9197486%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-2ed2ecd6c71ff7a659554fbed1f961c45d0dd9bdd520efeb360cfc43f4fd0aef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9197486&rfr_iscdi=true