Loading…

Predicting Bandwidth Utilization on Network Links Using Machine Learning

Predicting the bandwidth utilization on network links can be extremely useful for detecting congestion in order to correct them before they occur. In this paper, we present a solution to predict the bandwidth utilization between different network links with a very high accuracy. A simulated network...

Full description

Saved in:
Bibliographic Details
Main Authors: Labonne, Maxime, Chatzinakis, Charalampos, Olivereau, Alexis
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 247
container_issue
container_start_page 242
container_title
container_volume
creator Labonne, Maxime
Chatzinakis, Charalampos
Olivereau, Alexis
description Predicting the bandwidth utilization on network links can be extremely useful for detecting congestion in order to correct them before they occur. In this paper, we present a solution to predict the bandwidth utilization between different network links with a very high accuracy. A simulated network is created to collect data related to the performance of the network links on every interface. These data are processed and expanded with feature engineering in order to create a training set. We evaluate and compare three types of machine learning algorithms, namely ARIMA (AutoRegressive Integrated Moving Average), MLP (Multi Layer Perceptron) and LSTM (Long Short-Term Memory), in order to predict the future bandwidth consumption. The LSTM outperforms ARIMA and MLP with very accurate predictions, rarely exceeding a 3% error (40% for ARIMA and 20% for the MLP). We then show that the proposed solution can be used in real time with a reaction managed by a Software-Defined Networking (SDN) platform.
doi_str_mv 10.1109/EuCNC48522.2020.9200910
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9200910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9200910</ieee_id><sourcerecordid>9200910</sourcerecordid><originalsourceid>FETCH-LOGICAL-h237t-edb3dbca4f2a718e198e40c7b3b8f01cb19f85ef3ed2d8cefe1a7607686446f83</originalsourceid><addsrcrecordid>eNotj1FLwzAUhaMgOOd-gQ_mD3Tem6RN8qhlOqFOH-zzSJMbGzc7aStDf70TBwcOfBw-OIxdI8wRwd4svspVqUwuxFyAgLkVABbhhF2gFgaVzHM8ZROR6zxTFsU5mw3DOwBIAVIVasKWLz2F5MfUvfE714V9CmPL6zFt048b067jh6xo3O_6Da9Stxl4PfyNn5xvU0e8Itd3B3DJzqLbDjQ79pTV94vXcplVzw-P5W2VtULqMaPQyNB4p6JwGg2hNaTA60Y2JgL6Bm00OUVJQQTjKRI6XYAuTKFUEY2csqt_byKi9WefPlz_vT4el79nX06p</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Predicting Bandwidth Utilization on Network Links Using Machine Learning</title><source>IEEE Xplore All Conference Series</source><creator>Labonne, Maxime ; Chatzinakis, Charalampos ; Olivereau, Alexis</creator><creatorcontrib>Labonne, Maxime ; Chatzinakis, Charalampos ; Olivereau, Alexis</creatorcontrib><description>Predicting the bandwidth utilization on network links can be extremely useful for detecting congestion in order to correct them before they occur. In this paper, we present a solution to predict the bandwidth utilization between different network links with a very high accuracy. A simulated network is created to collect data related to the performance of the network links on every interface. These data are processed and expanded with feature engineering in order to create a training set. We evaluate and compare three types of machine learning algorithms, namely ARIMA (AutoRegressive Integrated Moving Average), MLP (Multi Layer Perceptron) and LSTM (Long Short-Term Memory), in order to predict the future bandwidth consumption. The LSTM outperforms ARIMA and MLP with very accurate predictions, rarely exceeding a 3% error (40% for ARIMA and 20% for the MLP). We then show that the proposed solution can be used in real time with a reaction managed by a Software-Defined Networking (SDN) platform.</description><identifier>EISSN: 2575-4912</identifier><identifier>EISBN: 1728143551</identifier><identifier>EISBN: 9781728143552</identifier><identifier>DOI: 10.1109/EuCNC48522.2020.9200910</identifier><language>eng</language><publisher>IEEE</publisher><subject>ARIMA ; Bandwidth ; Bit rate ; Congestion detection ; Europe ; LSTM ; Machine learning algorithms ; MLP ; Monitoring ; Real-Time Bandwidth Prediction ; Training</subject><ispartof>2020 European Conference on Networks and Communications (EuCNC), 2020, p.242-247</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9200910$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9200910$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Labonne, Maxime</creatorcontrib><creatorcontrib>Chatzinakis, Charalampos</creatorcontrib><creatorcontrib>Olivereau, Alexis</creatorcontrib><title>Predicting Bandwidth Utilization on Network Links Using Machine Learning</title><title>2020 European Conference on Networks and Communications (EuCNC)</title><addtitle>EuCNC</addtitle><description>Predicting the bandwidth utilization on network links can be extremely useful for detecting congestion in order to correct them before they occur. In this paper, we present a solution to predict the bandwidth utilization between different network links with a very high accuracy. A simulated network is created to collect data related to the performance of the network links on every interface. These data are processed and expanded with feature engineering in order to create a training set. We evaluate and compare three types of machine learning algorithms, namely ARIMA (AutoRegressive Integrated Moving Average), MLP (Multi Layer Perceptron) and LSTM (Long Short-Term Memory), in order to predict the future bandwidth consumption. The LSTM outperforms ARIMA and MLP with very accurate predictions, rarely exceeding a 3% error (40% for ARIMA and 20% for the MLP). We then show that the proposed solution can be used in real time with a reaction managed by a Software-Defined Networking (SDN) platform.</description><subject>ARIMA</subject><subject>Bandwidth</subject><subject>Bit rate</subject><subject>Congestion detection</subject><subject>Europe</subject><subject>LSTM</subject><subject>Machine learning algorithms</subject><subject>MLP</subject><subject>Monitoring</subject><subject>Real-Time Bandwidth Prediction</subject><subject>Training</subject><issn>2575-4912</issn><isbn>1728143551</isbn><isbn>9781728143552</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj1FLwzAUhaMgOOd-gQ_mD3Tem6RN8qhlOqFOH-zzSJMbGzc7aStDf70TBwcOfBw-OIxdI8wRwd4svspVqUwuxFyAgLkVABbhhF2gFgaVzHM8ZROR6zxTFsU5mw3DOwBIAVIVasKWLz2F5MfUvfE714V9CmPL6zFt048b067jh6xo3O_6Da9Stxl4PfyNn5xvU0e8Itd3B3DJzqLbDjQ79pTV94vXcplVzw-P5W2VtULqMaPQyNB4p6JwGg2hNaTA60Y2JgL6Bm00OUVJQQTjKRI6XYAuTKFUEY2csqt_byKi9WefPlz_vT4el79nX06p</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Labonne, Maxime</creator><creator>Chatzinakis, Charalampos</creator><creator>Olivereau, Alexis</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202006</creationdate><title>Predicting Bandwidth Utilization on Network Links Using Machine Learning</title><author>Labonne, Maxime ; Chatzinakis, Charalampos ; Olivereau, Alexis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h237t-edb3dbca4f2a718e198e40c7b3b8f01cb19f85ef3ed2d8cefe1a7607686446f83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ARIMA</topic><topic>Bandwidth</topic><topic>Bit rate</topic><topic>Congestion detection</topic><topic>Europe</topic><topic>LSTM</topic><topic>Machine learning algorithms</topic><topic>MLP</topic><topic>Monitoring</topic><topic>Real-Time Bandwidth Prediction</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Labonne, Maxime</creatorcontrib><creatorcontrib>Chatzinakis, Charalampos</creatorcontrib><creatorcontrib>Olivereau, Alexis</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Labonne, Maxime</au><au>Chatzinakis, Charalampos</au><au>Olivereau, Alexis</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Predicting Bandwidth Utilization on Network Links Using Machine Learning</atitle><btitle>2020 European Conference on Networks and Communications (EuCNC)</btitle><stitle>EuCNC</stitle><date>2020-06</date><risdate>2020</risdate><spage>242</spage><epage>247</epage><pages>242-247</pages><eissn>2575-4912</eissn><eisbn>1728143551</eisbn><eisbn>9781728143552</eisbn><abstract>Predicting the bandwidth utilization on network links can be extremely useful for detecting congestion in order to correct them before they occur. In this paper, we present a solution to predict the bandwidth utilization between different network links with a very high accuracy. A simulated network is created to collect data related to the performance of the network links on every interface. These data are processed and expanded with feature engineering in order to create a training set. We evaluate and compare three types of machine learning algorithms, namely ARIMA (AutoRegressive Integrated Moving Average), MLP (Multi Layer Perceptron) and LSTM (Long Short-Term Memory), in order to predict the future bandwidth consumption. The LSTM outperforms ARIMA and MLP with very accurate predictions, rarely exceeding a 3% error (40% for ARIMA and 20% for the MLP). We then show that the proposed solution can be used in real time with a reaction managed by a Software-Defined Networking (SDN) platform.</abstract><pub>IEEE</pub><doi>10.1109/EuCNC48522.2020.9200910</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2575-4912
ispartof 2020 European Conference on Networks and Communications (EuCNC), 2020, p.242-247
issn 2575-4912
language eng
recordid cdi_ieee_primary_9200910
source IEEE Xplore All Conference Series
subjects ARIMA
Bandwidth
Bit rate
Congestion detection
Europe
LSTM
Machine learning algorithms
MLP
Monitoring
Real-Time Bandwidth Prediction
Training
title Predicting Bandwidth Utilization on Network Links Using Machine Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A23%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Predicting%20Bandwidth%20Utilization%20on%20Network%20Links%20Using%20Machine%20Learning&rft.btitle=2020%20European%20Conference%20on%20Networks%20and%20Communications%20(EuCNC)&rft.au=Labonne,%20Maxime&rft.date=2020-06&rft.spage=242&rft.epage=247&rft.pages=242-247&rft.eissn=2575-4912&rft_id=info:doi/10.1109/EuCNC48522.2020.9200910&rft.eisbn=1728143551&rft.eisbn_list=9781728143552&rft_dat=%3Cieee_CHZPO%3E9200910%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h237t-edb3dbca4f2a718e198e40c7b3b8f01cb19f85ef3ed2d8cefe1a7607686446f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9200910&rfr_iscdi=true