Loading…
Predicting Bandwidth Utilization on Network Links Using Machine Learning
Predicting the bandwidth utilization on network links can be extremely useful for detecting congestion in order to correct them before they occur. In this paper, we present a solution to predict the bandwidth utilization between different network links with a very high accuracy. A simulated network...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 247 |
container_issue | |
container_start_page | 242 |
container_title | |
container_volume | |
creator | Labonne, Maxime Chatzinakis, Charalampos Olivereau, Alexis |
description | Predicting the bandwidth utilization on network links can be extremely useful for detecting congestion in order to correct them before they occur. In this paper, we present a solution to predict the bandwidth utilization between different network links with a very high accuracy. A simulated network is created to collect data related to the performance of the network links on every interface. These data are processed and expanded with feature engineering in order to create a training set. We evaluate and compare three types of machine learning algorithms, namely ARIMA (AutoRegressive Integrated Moving Average), MLP (Multi Layer Perceptron) and LSTM (Long Short-Term Memory), in order to predict the future bandwidth consumption. The LSTM outperforms ARIMA and MLP with very accurate predictions, rarely exceeding a 3% error (40% for ARIMA and 20% for the MLP). We then show that the proposed solution can be used in real time with a reaction managed by a Software-Defined Networking (SDN) platform. |
doi_str_mv | 10.1109/EuCNC48522.2020.9200910 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9200910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9200910</ieee_id><sourcerecordid>9200910</sourcerecordid><originalsourceid>FETCH-LOGICAL-h237t-edb3dbca4f2a718e198e40c7b3b8f01cb19f85ef3ed2d8cefe1a7607686446f83</originalsourceid><addsrcrecordid>eNotj1FLwzAUhaMgOOd-gQ_mD3Tem6RN8qhlOqFOH-zzSJMbGzc7aStDf70TBwcOfBw-OIxdI8wRwd4svspVqUwuxFyAgLkVABbhhF2gFgaVzHM8ZROR6zxTFsU5mw3DOwBIAVIVasKWLz2F5MfUvfE714V9CmPL6zFt048b067jh6xo3O_6Da9Stxl4PfyNn5xvU0e8Itd3B3DJzqLbDjQ79pTV94vXcplVzw-P5W2VtULqMaPQyNB4p6JwGg2hNaTA60Y2JgL6Bm00OUVJQQTjKRI6XYAuTKFUEY2csqt_byKi9WefPlz_vT4el79nX06p</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Predicting Bandwidth Utilization on Network Links Using Machine Learning</title><source>IEEE Xplore All Conference Series</source><creator>Labonne, Maxime ; Chatzinakis, Charalampos ; Olivereau, Alexis</creator><creatorcontrib>Labonne, Maxime ; Chatzinakis, Charalampos ; Olivereau, Alexis</creatorcontrib><description>Predicting the bandwidth utilization on network links can be extremely useful for detecting congestion in order to correct them before they occur. In this paper, we present a solution to predict the bandwidth utilization between different network links with a very high accuracy. A simulated network is created to collect data related to the performance of the network links on every interface. These data are processed and expanded with feature engineering in order to create a training set. We evaluate and compare three types of machine learning algorithms, namely ARIMA (AutoRegressive Integrated Moving Average), MLP (Multi Layer Perceptron) and LSTM (Long Short-Term Memory), in order to predict the future bandwidth consumption. The LSTM outperforms ARIMA and MLP with very accurate predictions, rarely exceeding a 3% error (40% for ARIMA and 20% for the MLP). We then show that the proposed solution can be used in real time with a reaction managed by a Software-Defined Networking (SDN) platform.</description><identifier>EISSN: 2575-4912</identifier><identifier>EISBN: 1728143551</identifier><identifier>EISBN: 9781728143552</identifier><identifier>DOI: 10.1109/EuCNC48522.2020.9200910</identifier><language>eng</language><publisher>IEEE</publisher><subject>ARIMA ; Bandwidth ; Bit rate ; Congestion detection ; Europe ; LSTM ; Machine learning algorithms ; MLP ; Monitoring ; Real-Time Bandwidth Prediction ; Training</subject><ispartof>2020 European Conference on Networks and Communications (EuCNC), 2020, p.242-247</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9200910$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9200910$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Labonne, Maxime</creatorcontrib><creatorcontrib>Chatzinakis, Charalampos</creatorcontrib><creatorcontrib>Olivereau, Alexis</creatorcontrib><title>Predicting Bandwidth Utilization on Network Links Using Machine Learning</title><title>2020 European Conference on Networks and Communications (EuCNC)</title><addtitle>EuCNC</addtitle><description>Predicting the bandwidth utilization on network links can be extremely useful for detecting congestion in order to correct them before they occur. In this paper, we present a solution to predict the bandwidth utilization between different network links with a very high accuracy. A simulated network is created to collect data related to the performance of the network links on every interface. These data are processed and expanded with feature engineering in order to create a training set. We evaluate and compare three types of machine learning algorithms, namely ARIMA (AutoRegressive Integrated Moving Average), MLP (Multi Layer Perceptron) and LSTM (Long Short-Term Memory), in order to predict the future bandwidth consumption. The LSTM outperforms ARIMA and MLP with very accurate predictions, rarely exceeding a 3% error (40% for ARIMA and 20% for the MLP). We then show that the proposed solution can be used in real time with a reaction managed by a Software-Defined Networking (SDN) platform.</description><subject>ARIMA</subject><subject>Bandwidth</subject><subject>Bit rate</subject><subject>Congestion detection</subject><subject>Europe</subject><subject>LSTM</subject><subject>Machine learning algorithms</subject><subject>MLP</subject><subject>Monitoring</subject><subject>Real-Time Bandwidth Prediction</subject><subject>Training</subject><issn>2575-4912</issn><isbn>1728143551</isbn><isbn>9781728143552</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj1FLwzAUhaMgOOd-gQ_mD3Tem6RN8qhlOqFOH-zzSJMbGzc7aStDf70TBwcOfBw-OIxdI8wRwd4svspVqUwuxFyAgLkVABbhhF2gFgaVzHM8ZROR6zxTFsU5mw3DOwBIAVIVasKWLz2F5MfUvfE714V9CmPL6zFt048b067jh6xo3O_6Da9Stxl4PfyNn5xvU0e8Itd3B3DJzqLbDjQ79pTV94vXcplVzw-P5W2VtULqMaPQyNB4p6JwGg2hNaTA60Y2JgL6Bm00OUVJQQTjKRI6XYAuTKFUEY2csqt_byKi9WefPlz_vT4el79nX06p</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Labonne, Maxime</creator><creator>Chatzinakis, Charalampos</creator><creator>Olivereau, Alexis</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202006</creationdate><title>Predicting Bandwidth Utilization on Network Links Using Machine Learning</title><author>Labonne, Maxime ; Chatzinakis, Charalampos ; Olivereau, Alexis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h237t-edb3dbca4f2a718e198e40c7b3b8f01cb19f85ef3ed2d8cefe1a7607686446f83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ARIMA</topic><topic>Bandwidth</topic><topic>Bit rate</topic><topic>Congestion detection</topic><topic>Europe</topic><topic>LSTM</topic><topic>Machine learning algorithms</topic><topic>MLP</topic><topic>Monitoring</topic><topic>Real-Time Bandwidth Prediction</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Labonne, Maxime</creatorcontrib><creatorcontrib>Chatzinakis, Charalampos</creatorcontrib><creatorcontrib>Olivereau, Alexis</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Labonne, Maxime</au><au>Chatzinakis, Charalampos</au><au>Olivereau, Alexis</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Predicting Bandwidth Utilization on Network Links Using Machine Learning</atitle><btitle>2020 European Conference on Networks and Communications (EuCNC)</btitle><stitle>EuCNC</stitle><date>2020-06</date><risdate>2020</risdate><spage>242</spage><epage>247</epage><pages>242-247</pages><eissn>2575-4912</eissn><eisbn>1728143551</eisbn><eisbn>9781728143552</eisbn><abstract>Predicting the bandwidth utilization on network links can be extremely useful for detecting congestion in order to correct them before they occur. In this paper, we present a solution to predict the bandwidth utilization between different network links with a very high accuracy. A simulated network is created to collect data related to the performance of the network links on every interface. These data are processed and expanded with feature engineering in order to create a training set. We evaluate and compare three types of machine learning algorithms, namely ARIMA (AutoRegressive Integrated Moving Average), MLP (Multi Layer Perceptron) and LSTM (Long Short-Term Memory), in order to predict the future bandwidth consumption. The LSTM outperforms ARIMA and MLP with very accurate predictions, rarely exceeding a 3% error (40% for ARIMA and 20% for the MLP). We then show that the proposed solution can be used in real time with a reaction managed by a Software-Defined Networking (SDN) platform.</abstract><pub>IEEE</pub><doi>10.1109/EuCNC48522.2020.9200910</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2575-4912 |
ispartof | 2020 European Conference on Networks and Communications (EuCNC), 2020, p.242-247 |
issn | 2575-4912 |
language | eng |
recordid | cdi_ieee_primary_9200910 |
source | IEEE Xplore All Conference Series |
subjects | ARIMA Bandwidth Bit rate Congestion detection Europe LSTM Machine learning algorithms MLP Monitoring Real-Time Bandwidth Prediction Training |
title | Predicting Bandwidth Utilization on Network Links Using Machine Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A23%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Predicting%20Bandwidth%20Utilization%20on%20Network%20Links%20Using%20Machine%20Learning&rft.btitle=2020%20European%20Conference%20on%20Networks%20and%20Communications%20(EuCNC)&rft.au=Labonne,%20Maxime&rft.date=2020-06&rft.spage=242&rft.epage=247&rft.pages=242-247&rft.eissn=2575-4912&rft_id=info:doi/10.1109/EuCNC48522.2020.9200910&rft.eisbn=1728143551&rft.eisbn_list=9781728143552&rft_dat=%3Cieee_CHZPO%3E9200910%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h237t-edb3dbca4f2a718e198e40c7b3b8f01cb19f85ef3ed2d8cefe1a7607686446f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9200910&rfr_iscdi=true |