Loading…
Algorithmic Analysis and Statistical Estimation of SLOPE via Approximate Message Passing
SLOPE is a relatively new convex optimization procedure for high-dimensional linear regression via the sorted \ell _{1} penalty: the larger the rank of the fitted coefficient, the larger the penalty. This non-separable penalty renders many existing techniques invalid or inconclusive in analyzing t...
Saved in:
Published in: | IEEE transactions on information theory 2021-01, Vol.67 (1), p.506-537 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c333t-faef5f84e635ed7f0bea7be8fa93431a4d250ea4defba6a250525b321b3279873 |
---|---|
cites | cdi_FETCH-LOGICAL-c333t-faef5f84e635ed7f0bea7be8fa93431a4d250ea4defba6a250525b321b3279873 |
container_end_page | 537 |
container_issue | 1 |
container_start_page | 506 |
container_title | IEEE transactions on information theory |
container_volume | 67 |
creator | Bu, Zhiqi Klusowski, Jason M. Rush, Cynthia Su, Weijie J. |
description | SLOPE is a relatively new convex optimization procedure for high-dimensional linear regression via the sorted \ell _{1} penalty: the larger the rank of the fitted coefficient, the larger the penalty. This non-separable penalty renders many existing techniques invalid or inconclusive in analyzing the SLOPE solution. In this paper, we develop an asymptotically exact characterization of the SLOPE solution under Gaussian random designs through solving the SLOPE problem using approximate message passing (AMP). This algorithmic approach allows us to approximate the SLOPE solution via the much more amenable AMP iterates. Explicitly, we characterize the asymptotic dynamics of the AMP iterates relying on a recently developed state evolution analysis for non-separable penalties, thereby overcoming the difficulty caused by the sorted \ell _{1} penalty. Moreover, we prove that the AMP iterates converge to the SLOPE solution in an asymptotic sense, and numerical simulations show that the convergence is surprisingly fast. Our proof rests on a novel technique that specifically leverages the SLOPE problem. In contrast to prior literature, our work not only yields an asymptotically sharp analysis but also offers an algorithmic, flexible, and constructive approach to understanding the SLOPE problem. |
doi_str_mv | 10.1109/TIT.2020.3025272 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9204751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9204751</ieee_id><sourcerecordid>2472317014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-faef5f84e635ed7f0bea7be8fa93431a4d250ea4defba6a250525b321b3279873</originalsourceid><addsrcrecordid>eNo9UE1rwkAUXEoLtbb3Qi8LPcfup5scg1grWBS00NuyiW_tSkxsXiz133dF6eExDG_eY2YIeeRswDnLXlbT1UAwwQaSCS2MuCI9rrVJsqFW16THGE-TTKn0ltwhbiNVmose-cyrTdOG7msXSprXrjpiQOrqNV12rgvYhdJVdBxxF2lT08bT5Wy-GNOf4Gi-37fN72kF9B0Q3QbowiGGenNPbryrEB4u2Ccfr-PV6C2ZzSfTUT5LSilll3gHXvtUwVBqWBvPCnCmgNS7TCrJnVoLzSAC-MINXSRa6EIKHsdkqZF98nz-G518HwA7u20ObQyCVigjJDcxalSxs6psG8QWvN230XZ7tJzZU3829mdP_dlLf_Hk6XwSAOBfngmmjObyD5ErbDE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2472317014</pqid></control><display><type>article</type><title>Algorithmic Analysis and Statistical Estimation of SLOPE via Approximate Message Passing</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Bu, Zhiqi ; Klusowski, Jason M. ; Rush, Cynthia ; Su, Weijie J.</creator><creatorcontrib>Bu, Zhiqi ; Klusowski, Jason M. ; Rush, Cynthia ; Su, Weijie J.</creatorcontrib><description><![CDATA[SLOPE is a relatively new convex optimization procedure for high-dimensional linear regression via the sorted <inline-formula> <tex-math notation="LaTeX">\ell _{1} </tex-math></inline-formula> penalty: the larger the rank of the fitted coefficient, the larger the penalty. This non-separable penalty renders many existing techniques invalid or inconclusive in analyzing the SLOPE solution. In this paper, we develop an asymptotically exact characterization of the SLOPE solution under Gaussian random designs through solving the SLOPE problem using approximate message passing (AMP). This algorithmic approach allows us to approximate the SLOPE solution via the much more amenable AMP iterates. Explicitly, we characterize the asymptotic dynamics of the AMP iterates relying on a recently developed state evolution analysis for non-separable penalties, thereby overcoming the difficulty caused by the sorted <inline-formula> <tex-math notation="LaTeX">\ell _{1} </tex-math></inline-formula> penalty. Moreover, we prove that the AMP iterates converge to the SLOPE solution in an asymptotic sense, and numerical simulations show that the convergence is surprisingly fast. Our proof rests on a novel technique that specifically leverages the SLOPE problem. In contrast to prior literature, our work not only yields an asymptotically sharp analysis but also offers an algorithmic, flexible, and constructive approach to understanding the SLOPE problem.]]></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2020.3025272</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximate message passing (AMP) ; Approximation algorithms ; Asymptotic properties ; Computational geometry ; Convergence ; Convexity ; Electronic mail ; Estimation ; Fines & penalties ; high-dimensional regression ; Message passing ; Optimization ; Regression analysis ; sorted <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">ℓ ₁ regression ; state evolution ; Statistical analysis</subject><ispartof>IEEE transactions on information theory, 2021-01, Vol.67 (1), p.506-537</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-faef5f84e635ed7f0bea7be8fa93431a4d250ea4defba6a250525b321b3279873</citedby><cites>FETCH-LOGICAL-c333t-faef5f84e635ed7f0bea7be8fa93431a4d250ea4defba6a250525b321b3279873</cites><orcidid>0000-0001-6484-8682 ; 0000-0001-6857-2855 ; 0000-0003-1787-1219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9204751$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Bu, Zhiqi</creatorcontrib><creatorcontrib>Klusowski, Jason M.</creatorcontrib><creatorcontrib>Rush, Cynthia</creatorcontrib><creatorcontrib>Su, Weijie J.</creatorcontrib><title>Algorithmic Analysis and Statistical Estimation of SLOPE via Approximate Message Passing</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description><![CDATA[SLOPE is a relatively new convex optimization procedure for high-dimensional linear regression via the sorted <inline-formula> <tex-math notation="LaTeX">\ell _{1} </tex-math></inline-formula> penalty: the larger the rank of the fitted coefficient, the larger the penalty. This non-separable penalty renders many existing techniques invalid or inconclusive in analyzing the SLOPE solution. In this paper, we develop an asymptotically exact characterization of the SLOPE solution under Gaussian random designs through solving the SLOPE problem using approximate message passing (AMP). This algorithmic approach allows us to approximate the SLOPE solution via the much more amenable AMP iterates. Explicitly, we characterize the asymptotic dynamics of the AMP iterates relying on a recently developed state evolution analysis for non-separable penalties, thereby overcoming the difficulty caused by the sorted <inline-formula> <tex-math notation="LaTeX">\ell _{1} </tex-math></inline-formula> penalty. Moreover, we prove that the AMP iterates converge to the SLOPE solution in an asymptotic sense, and numerical simulations show that the convergence is surprisingly fast. Our proof rests on a novel technique that specifically leverages the SLOPE problem. In contrast to prior literature, our work not only yields an asymptotically sharp analysis but also offers an algorithmic, flexible, and constructive approach to understanding the SLOPE problem.]]></description><subject>Algorithms</subject><subject>Approximate message passing (AMP)</subject><subject>Approximation algorithms</subject><subject>Asymptotic properties</subject><subject>Computational geometry</subject><subject>Convergence</subject><subject>Convexity</subject><subject>Electronic mail</subject><subject>Estimation</subject><subject>Fines & penalties</subject><subject>high-dimensional regression</subject><subject>Message passing</subject><subject>Optimization</subject><subject>Regression analysis</subject><subject>sorted <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">ℓ ₁ regression</subject><subject>state evolution</subject><subject>Statistical analysis</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9UE1rwkAUXEoLtbb3Qi8LPcfup5scg1grWBS00NuyiW_tSkxsXiz133dF6eExDG_eY2YIeeRswDnLXlbT1UAwwQaSCS2MuCI9rrVJsqFW16THGE-TTKn0ltwhbiNVmose-cyrTdOG7msXSprXrjpiQOrqNV12rgvYhdJVdBxxF2lT08bT5Wy-GNOf4Gi-37fN72kF9B0Q3QbowiGGenNPbryrEB4u2Ccfr-PV6C2ZzSfTUT5LSilll3gHXvtUwVBqWBvPCnCmgNS7TCrJnVoLzSAC-MINXSRa6EIKHsdkqZF98nz-G518HwA7u20ObQyCVigjJDcxalSxs6psG8QWvN230XZ7tJzZU3829mdP_dlLf_Hk6XwSAOBfngmmjObyD5ErbDE</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Bu, Zhiqi</creator><creator>Klusowski, Jason M.</creator><creator>Rush, Cynthia</creator><creator>Su, Weijie J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6484-8682</orcidid><orcidid>https://orcid.org/0000-0001-6857-2855</orcidid><orcidid>https://orcid.org/0000-0003-1787-1219</orcidid></search><sort><creationdate>202101</creationdate><title>Algorithmic Analysis and Statistical Estimation of SLOPE via Approximate Message Passing</title><author>Bu, Zhiqi ; Klusowski, Jason M. ; Rush, Cynthia ; Su, Weijie J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-faef5f84e635ed7f0bea7be8fa93431a4d250ea4defba6a250525b321b3279873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Approximate message passing (AMP)</topic><topic>Approximation algorithms</topic><topic>Asymptotic properties</topic><topic>Computational geometry</topic><topic>Convergence</topic><topic>Convexity</topic><topic>Electronic mail</topic><topic>Estimation</topic><topic>Fines & penalties</topic><topic>high-dimensional regression</topic><topic>Message passing</topic><topic>Optimization</topic><topic>Regression analysis</topic><topic>sorted <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">ℓ ₁ regression</topic><topic>state evolution</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bu, Zhiqi</creatorcontrib><creatorcontrib>Klusowski, Jason M.</creatorcontrib><creatorcontrib>Rush, Cynthia</creatorcontrib><creatorcontrib>Su, Weijie J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bu, Zhiqi</au><au>Klusowski, Jason M.</au><au>Rush, Cynthia</au><au>Su, Weijie J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algorithmic Analysis and Statistical Estimation of SLOPE via Approximate Message Passing</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2021-01</date><risdate>2021</risdate><volume>67</volume><issue>1</issue><spage>506</spage><epage>537</epage><pages>506-537</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract><![CDATA[SLOPE is a relatively new convex optimization procedure for high-dimensional linear regression via the sorted <inline-formula> <tex-math notation="LaTeX">\ell _{1} </tex-math></inline-formula> penalty: the larger the rank of the fitted coefficient, the larger the penalty. This non-separable penalty renders many existing techniques invalid or inconclusive in analyzing the SLOPE solution. In this paper, we develop an asymptotically exact characterization of the SLOPE solution under Gaussian random designs through solving the SLOPE problem using approximate message passing (AMP). This algorithmic approach allows us to approximate the SLOPE solution via the much more amenable AMP iterates. Explicitly, we characterize the asymptotic dynamics of the AMP iterates relying on a recently developed state evolution analysis for non-separable penalties, thereby overcoming the difficulty caused by the sorted <inline-formula> <tex-math notation="LaTeX">\ell _{1} </tex-math></inline-formula> penalty. Moreover, we prove that the AMP iterates converge to the SLOPE solution in an asymptotic sense, and numerical simulations show that the convergence is surprisingly fast. Our proof rests on a novel technique that specifically leverages the SLOPE problem. In contrast to prior literature, our work not only yields an asymptotically sharp analysis but also offers an algorithmic, flexible, and constructive approach to understanding the SLOPE problem.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2020.3025272</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0001-6484-8682</orcidid><orcidid>https://orcid.org/0000-0001-6857-2855</orcidid><orcidid>https://orcid.org/0000-0003-1787-1219</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2021-01, Vol.67 (1), p.506-537 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_ieee_primary_9204751 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Approximate message passing (AMP) Approximation algorithms Asymptotic properties Computational geometry Convergence Convexity Electronic mail Estimation Fines & penalties high-dimensional regression Message passing Optimization Regression analysis sorted <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">ℓ ₁ regression state evolution Statistical analysis |
title | Algorithmic Analysis and Statistical Estimation of SLOPE via Approximate Message Passing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algorithmic%20Analysis%20and%20Statistical%20Estimation%20of%20SLOPE%20via%20Approximate%20Message%20Passing&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Bu,%20Zhiqi&rft.date=2021-01&rft.volume=67&rft.issue=1&rft.spage=506&rft.epage=537&rft.pages=506-537&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2020.3025272&rft_dat=%3Cproquest_ieee_%3E2472317014%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-faef5f84e635ed7f0bea7be8fa93431a4d250ea4defba6a250525b321b3279873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2472317014&rft_id=info:pmid/&rft_ieee_id=9204751&rfr_iscdi=true |