Loading…

Algorithmic Analysis and Statistical Estimation of SLOPE via Approximate Message Passing

SLOPE is a relatively new convex optimization procedure for high-dimensional linear regression via the sorted \ell _{1} penalty: the larger the rank of the fitted coefficient, the larger the penalty. This non-separable penalty renders many existing techniques invalid or inconclusive in analyzing t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory 2021-01, Vol.67 (1), p.506-537
Main Authors: Bu, Zhiqi, Klusowski, Jason M., Rush, Cynthia, Su, Weijie J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c333t-faef5f84e635ed7f0bea7be8fa93431a4d250ea4defba6a250525b321b3279873
cites cdi_FETCH-LOGICAL-c333t-faef5f84e635ed7f0bea7be8fa93431a4d250ea4defba6a250525b321b3279873
container_end_page 537
container_issue 1
container_start_page 506
container_title IEEE transactions on information theory
container_volume 67
creator Bu, Zhiqi
Klusowski, Jason M.
Rush, Cynthia
Su, Weijie J.
description SLOPE is a relatively new convex optimization procedure for high-dimensional linear regression via the sorted \ell _{1} penalty: the larger the rank of the fitted coefficient, the larger the penalty. This non-separable penalty renders many existing techniques invalid or inconclusive in analyzing the SLOPE solution. In this paper, we develop an asymptotically exact characterization of the SLOPE solution under Gaussian random designs through solving the SLOPE problem using approximate message passing (AMP). This algorithmic approach allows us to approximate the SLOPE solution via the much more amenable AMP iterates. Explicitly, we characterize the asymptotic dynamics of the AMP iterates relying on a recently developed state evolution analysis for non-separable penalties, thereby overcoming the difficulty caused by the sorted \ell _{1} penalty. Moreover, we prove that the AMP iterates converge to the SLOPE solution in an asymptotic sense, and numerical simulations show that the convergence is surprisingly fast. Our proof rests on a novel technique that specifically leverages the SLOPE problem. In contrast to prior literature, our work not only yields an asymptotically sharp analysis but also offers an algorithmic, flexible, and constructive approach to understanding the SLOPE problem.
doi_str_mv 10.1109/TIT.2020.3025272
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9204751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9204751</ieee_id><sourcerecordid>2472317014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-faef5f84e635ed7f0bea7be8fa93431a4d250ea4defba6a250525b321b3279873</originalsourceid><addsrcrecordid>eNo9UE1rwkAUXEoLtbb3Qi8LPcfup5scg1grWBS00NuyiW_tSkxsXiz133dF6eExDG_eY2YIeeRswDnLXlbT1UAwwQaSCS2MuCI9rrVJsqFW16THGE-TTKn0ltwhbiNVmose-cyrTdOG7msXSprXrjpiQOrqNV12rgvYhdJVdBxxF2lT08bT5Wy-GNOf4Gi-37fN72kF9B0Q3QbowiGGenNPbryrEB4u2Ccfr-PV6C2ZzSfTUT5LSilll3gHXvtUwVBqWBvPCnCmgNS7TCrJnVoLzSAC-MINXSRa6EIKHsdkqZF98nz-G518HwA7u20ObQyCVigjJDcxalSxs6psG8QWvN230XZ7tJzZU3829mdP_dlLf_Hk6XwSAOBfngmmjObyD5ErbDE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2472317014</pqid></control><display><type>article</type><title>Algorithmic Analysis and Statistical Estimation of SLOPE via Approximate Message Passing</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Bu, Zhiqi ; Klusowski, Jason M. ; Rush, Cynthia ; Su, Weijie J.</creator><creatorcontrib>Bu, Zhiqi ; Klusowski, Jason M. ; Rush, Cynthia ; Su, Weijie J.</creatorcontrib><description><![CDATA[SLOPE is a relatively new convex optimization procedure for high-dimensional linear regression via the sorted <inline-formula> <tex-math notation="LaTeX">\ell _{1} </tex-math></inline-formula> penalty: the larger the rank of the fitted coefficient, the larger the penalty. This non-separable penalty renders many existing techniques invalid or inconclusive in analyzing the SLOPE solution. In this paper, we develop an asymptotically exact characterization of the SLOPE solution under Gaussian random designs through solving the SLOPE problem using approximate message passing (AMP). This algorithmic approach allows us to approximate the SLOPE solution via the much more amenable AMP iterates. Explicitly, we characterize the asymptotic dynamics of the AMP iterates relying on a recently developed state evolution analysis for non-separable penalties, thereby overcoming the difficulty caused by the sorted <inline-formula> <tex-math notation="LaTeX">\ell _{1} </tex-math></inline-formula> penalty. Moreover, we prove that the AMP iterates converge to the SLOPE solution in an asymptotic sense, and numerical simulations show that the convergence is surprisingly fast. Our proof rests on a novel technique that specifically leverages the SLOPE problem. In contrast to prior literature, our work not only yields an asymptotically sharp analysis but also offers an algorithmic, flexible, and constructive approach to understanding the SLOPE problem.]]></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2020.3025272</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximate message passing (AMP) ; Approximation algorithms ; Asymptotic properties ; Computational geometry ; Convergence ; Convexity ; Electronic mail ; Estimation ; Fines &amp; penalties ; high-dimensional regression ; Message passing ; Optimization ; Regression analysis ; sorted &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;ℓ ₁ regression ; state evolution ; Statistical analysis</subject><ispartof>IEEE transactions on information theory, 2021-01, Vol.67 (1), p.506-537</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-faef5f84e635ed7f0bea7be8fa93431a4d250ea4defba6a250525b321b3279873</citedby><cites>FETCH-LOGICAL-c333t-faef5f84e635ed7f0bea7be8fa93431a4d250ea4defba6a250525b321b3279873</cites><orcidid>0000-0001-6484-8682 ; 0000-0001-6857-2855 ; 0000-0003-1787-1219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9204751$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Bu, Zhiqi</creatorcontrib><creatorcontrib>Klusowski, Jason M.</creatorcontrib><creatorcontrib>Rush, Cynthia</creatorcontrib><creatorcontrib>Su, Weijie J.</creatorcontrib><title>Algorithmic Analysis and Statistical Estimation of SLOPE via Approximate Message Passing</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description><![CDATA[SLOPE is a relatively new convex optimization procedure for high-dimensional linear regression via the sorted <inline-formula> <tex-math notation="LaTeX">\ell _{1} </tex-math></inline-formula> penalty: the larger the rank of the fitted coefficient, the larger the penalty. This non-separable penalty renders many existing techniques invalid or inconclusive in analyzing the SLOPE solution. In this paper, we develop an asymptotically exact characterization of the SLOPE solution under Gaussian random designs through solving the SLOPE problem using approximate message passing (AMP). This algorithmic approach allows us to approximate the SLOPE solution via the much more amenable AMP iterates. Explicitly, we characterize the asymptotic dynamics of the AMP iterates relying on a recently developed state evolution analysis for non-separable penalties, thereby overcoming the difficulty caused by the sorted <inline-formula> <tex-math notation="LaTeX">\ell _{1} </tex-math></inline-formula> penalty. Moreover, we prove that the AMP iterates converge to the SLOPE solution in an asymptotic sense, and numerical simulations show that the convergence is surprisingly fast. Our proof rests on a novel technique that specifically leverages the SLOPE problem. In contrast to prior literature, our work not only yields an asymptotically sharp analysis but also offers an algorithmic, flexible, and constructive approach to understanding the SLOPE problem.]]></description><subject>Algorithms</subject><subject>Approximate message passing (AMP)</subject><subject>Approximation algorithms</subject><subject>Asymptotic properties</subject><subject>Computational geometry</subject><subject>Convergence</subject><subject>Convexity</subject><subject>Electronic mail</subject><subject>Estimation</subject><subject>Fines &amp; penalties</subject><subject>high-dimensional regression</subject><subject>Message passing</subject><subject>Optimization</subject><subject>Regression analysis</subject><subject>sorted &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;ℓ ₁ regression</subject><subject>state evolution</subject><subject>Statistical analysis</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9UE1rwkAUXEoLtbb3Qi8LPcfup5scg1grWBS00NuyiW_tSkxsXiz133dF6eExDG_eY2YIeeRswDnLXlbT1UAwwQaSCS2MuCI9rrVJsqFW16THGE-TTKn0ltwhbiNVmose-cyrTdOG7msXSprXrjpiQOrqNV12rgvYhdJVdBxxF2lT08bT5Wy-GNOf4Gi-37fN72kF9B0Q3QbowiGGenNPbryrEB4u2Ccfr-PV6C2ZzSfTUT5LSilll3gHXvtUwVBqWBvPCnCmgNS7TCrJnVoLzSAC-MINXSRa6EIKHsdkqZF98nz-G518HwA7u20ObQyCVigjJDcxalSxs6psG8QWvN230XZ7tJzZU3829mdP_dlLf_Hk6XwSAOBfngmmjObyD5ErbDE</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Bu, Zhiqi</creator><creator>Klusowski, Jason M.</creator><creator>Rush, Cynthia</creator><creator>Su, Weijie J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6484-8682</orcidid><orcidid>https://orcid.org/0000-0001-6857-2855</orcidid><orcidid>https://orcid.org/0000-0003-1787-1219</orcidid></search><sort><creationdate>202101</creationdate><title>Algorithmic Analysis and Statistical Estimation of SLOPE via Approximate Message Passing</title><author>Bu, Zhiqi ; Klusowski, Jason M. ; Rush, Cynthia ; Su, Weijie J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-faef5f84e635ed7f0bea7be8fa93431a4d250ea4defba6a250525b321b3279873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Approximate message passing (AMP)</topic><topic>Approximation algorithms</topic><topic>Asymptotic properties</topic><topic>Computational geometry</topic><topic>Convergence</topic><topic>Convexity</topic><topic>Electronic mail</topic><topic>Estimation</topic><topic>Fines &amp; penalties</topic><topic>high-dimensional regression</topic><topic>Message passing</topic><topic>Optimization</topic><topic>Regression analysis</topic><topic>sorted &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;ℓ ₁ regression</topic><topic>state evolution</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bu, Zhiqi</creatorcontrib><creatorcontrib>Klusowski, Jason M.</creatorcontrib><creatorcontrib>Rush, Cynthia</creatorcontrib><creatorcontrib>Su, Weijie J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bu, Zhiqi</au><au>Klusowski, Jason M.</au><au>Rush, Cynthia</au><au>Su, Weijie J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algorithmic Analysis and Statistical Estimation of SLOPE via Approximate Message Passing</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2021-01</date><risdate>2021</risdate><volume>67</volume><issue>1</issue><spage>506</spage><epage>537</epage><pages>506-537</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract><![CDATA[SLOPE is a relatively new convex optimization procedure for high-dimensional linear regression via the sorted <inline-formula> <tex-math notation="LaTeX">\ell _{1} </tex-math></inline-formula> penalty: the larger the rank of the fitted coefficient, the larger the penalty. This non-separable penalty renders many existing techniques invalid or inconclusive in analyzing the SLOPE solution. In this paper, we develop an asymptotically exact characterization of the SLOPE solution under Gaussian random designs through solving the SLOPE problem using approximate message passing (AMP). This algorithmic approach allows us to approximate the SLOPE solution via the much more amenable AMP iterates. Explicitly, we characterize the asymptotic dynamics of the AMP iterates relying on a recently developed state evolution analysis for non-separable penalties, thereby overcoming the difficulty caused by the sorted <inline-formula> <tex-math notation="LaTeX">\ell _{1} </tex-math></inline-formula> penalty. Moreover, we prove that the AMP iterates converge to the SLOPE solution in an asymptotic sense, and numerical simulations show that the convergence is surprisingly fast. Our proof rests on a novel technique that specifically leverages the SLOPE problem. In contrast to prior literature, our work not only yields an asymptotically sharp analysis but also offers an algorithmic, flexible, and constructive approach to understanding the SLOPE problem.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2020.3025272</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0001-6484-8682</orcidid><orcidid>https://orcid.org/0000-0001-6857-2855</orcidid><orcidid>https://orcid.org/0000-0003-1787-1219</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2021-01, Vol.67 (1), p.506-537
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_9204751
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Approximate message passing (AMP)
Approximation algorithms
Asymptotic properties
Computational geometry
Convergence
Convexity
Electronic mail
Estimation
Fines & penalties
high-dimensional regression
Message passing
Optimization
Regression analysis
sorted <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">ℓ ₁ regression
state evolution
Statistical analysis
title Algorithmic Analysis and Statistical Estimation of SLOPE via Approximate Message Passing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algorithmic%20Analysis%20and%20Statistical%20Estimation%20of%20SLOPE%20via%20Approximate%20Message%20Passing&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Bu,%20Zhiqi&rft.date=2021-01&rft.volume=67&rft.issue=1&rft.spage=506&rft.epage=537&rft.pages=506-537&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2020.3025272&rft_dat=%3Cproquest_ieee_%3E2472317014%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-faef5f84e635ed7f0bea7be8fa93431a4d250ea4defba6a250525b321b3279873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2472317014&rft_id=info:pmid/&rft_ieee_id=9204751&rfr_iscdi=true