Loading…
Robust feature learning method for epileptic seizures prediction based on long-term EEG signals
Deep learning (DL) has been expensively applied in multiple fields like computer vision, speech recognition and natural language processing. The field of Epileptic seizure prediction didn't receive the deserved attention by DL community, even though, deep neural networks can handle the challeng...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-fd37d299e51199559dcdac0c2610d2d1447284473c882d9d48267c4f24c9388e3 |
---|---|
cites | |
container_end_page | 7 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Baghdadi, Asma Fourati, Rahma Aribi, Yassine Siarry, Patrick Alimi, Adel M. |
description | Deep learning (DL) has been expensively applied in multiple fields like computer vision, speech recognition and natural language processing. The field of Epileptic seizure prediction didn't receive the deserved attention by DL community, even though, deep neural networks can handle the challenging task of onsets prediction whilst achieving the highest rates of sensitivity, despite the complex nature of EEG signals. In the literature, this issue was addressed differently most of the time using handcrafted temporal and spectral features, machine learning techniques and rarely deep learning with extracted features. In this paper, we introduce an LSTM model designed to address the chaotic nature of an EEG signal in order to predict pre-ictal and inter-ictal states. Our model is evaluated on the publicly available CHBMIT database. We achieved an average sensitivity rate of 0.84 using a Raw EEG data segment as input to the LSTM model. |
doi_str_mv | 10.1109/IJCNN48605.2020.9207070 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9207070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9207070</ieee_id><sourcerecordid>9207070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-fd37d299e51199559dcdac0c2610d2d1447284473c882d9d48267c4f24c9388e3</originalsourceid><addsrcrecordid>eNotUMFKAzEUjIJgW_0CD-YHtiYv2d28o5TaVkoF0XPZJm9rZLu7JOlBv96AZWBmDsPADGOPUsylFPi0eV3sdtpUopyDADFHEHXGFZvKGoysEKr6mk1AVrLQWtS3bBrjtxCgENWE7d-Hwzkm3lKTzoF4R03ofX_kJ0pfg-PtEDiNvqMxecsj-d-cinwM5LxNfuj5oYnkeDbd0B-LROHEl8sVj_7YN128YzdtFrq_6Ix9viw_Futi-7baLJ63hQWUqWidqh0gUiklYlmis66xwkIlhQMntc5jMilrDDh02uRZVregLSpjSM3Yw3-vJ6L9GPypCT_7yxnqD_hrVQA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Robust feature learning method for epileptic seizures prediction based on long-term EEG signals</title><source>IEEE Xplore All Conference Series</source><creator>Baghdadi, Asma ; Fourati, Rahma ; Aribi, Yassine ; Siarry, Patrick ; Alimi, Adel M.</creator><creatorcontrib>Baghdadi, Asma ; Fourati, Rahma ; Aribi, Yassine ; Siarry, Patrick ; Alimi, Adel M.</creatorcontrib><description>Deep learning (DL) has been expensively applied in multiple fields like computer vision, speech recognition and natural language processing. The field of Epileptic seizure prediction didn't receive the deserved attention by DL community, even though, deep neural networks can handle the challenging task of onsets prediction whilst achieving the highest rates of sensitivity, despite the complex nature of EEG signals. In the literature, this issue was addressed differently most of the time using handcrafted temporal and spectral features, machine learning techniques and rarely deep learning with extracted features. In this paper, we introduce an LSTM model designed to address the chaotic nature of an EEG signal in order to predict pre-ictal and inter-ictal states. Our model is evaluated on the publicly available CHBMIT database. We achieved an average sensitivity rate of 0.84 using a Raw EEG data segment as input to the LSTM model.</description><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 1728169267</identifier><identifier>EISBN: 9781728169262</identifier><identifier>DOI: 10.1109/IJCNN48605.2020.9207070</identifier><language>eng</language><publisher>IEEE</publisher><subject>Brain modeling ; Electroencephalography ; epileptic seizures prediction ; Feature extraction ; feature learning ; long-short term memory ; Machine learning ; raw EEG data ; Scalp ; Sensitivity</subject><ispartof>2020 International Joint Conference on Neural Networks (IJCNN), 2020, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-fd37d299e51199559dcdac0c2610d2d1447284473c882d9d48267c4f24c9388e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9207070$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9207070$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Baghdadi, Asma</creatorcontrib><creatorcontrib>Fourati, Rahma</creatorcontrib><creatorcontrib>Aribi, Yassine</creatorcontrib><creatorcontrib>Siarry, Patrick</creatorcontrib><creatorcontrib>Alimi, Adel M.</creatorcontrib><title>Robust feature learning method for epileptic seizures prediction based on long-term EEG signals</title><title>2020 International Joint Conference on Neural Networks (IJCNN)</title><addtitle>IJCNN</addtitle><description>Deep learning (DL) has been expensively applied in multiple fields like computer vision, speech recognition and natural language processing. The field of Epileptic seizure prediction didn't receive the deserved attention by DL community, even though, deep neural networks can handle the challenging task of onsets prediction whilst achieving the highest rates of sensitivity, despite the complex nature of EEG signals. In the literature, this issue was addressed differently most of the time using handcrafted temporal and spectral features, machine learning techniques and rarely deep learning with extracted features. In this paper, we introduce an LSTM model designed to address the chaotic nature of an EEG signal in order to predict pre-ictal and inter-ictal states. Our model is evaluated on the publicly available CHBMIT database. We achieved an average sensitivity rate of 0.84 using a Raw EEG data segment as input to the LSTM model.</description><subject>Brain modeling</subject><subject>Electroencephalography</subject><subject>epileptic seizures prediction</subject><subject>Feature extraction</subject><subject>feature learning</subject><subject>long-short term memory</subject><subject>Machine learning</subject><subject>raw EEG data</subject><subject>Scalp</subject><subject>Sensitivity</subject><issn>2161-4407</issn><isbn>1728169267</isbn><isbn>9781728169262</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotUMFKAzEUjIJgW_0CD-YHtiYv2d28o5TaVkoF0XPZJm9rZLu7JOlBv96AZWBmDsPADGOPUsylFPi0eV3sdtpUopyDADFHEHXGFZvKGoysEKr6mk1AVrLQWtS3bBrjtxCgENWE7d-Hwzkm3lKTzoF4R03ofX_kJ0pfg-PtEDiNvqMxecsj-d-cinwM5LxNfuj5oYnkeDbd0B-LROHEl8sVj_7YN128YzdtFrq_6Ix9viw_Futi-7baLJ63hQWUqWidqh0gUiklYlmis66xwkIlhQMntc5jMilrDDh02uRZVregLSpjSM3Yw3-vJ6L9GPypCT_7yxnqD_hrVQA</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Baghdadi, Asma</creator><creator>Fourati, Rahma</creator><creator>Aribi, Yassine</creator><creator>Siarry, Patrick</creator><creator>Alimi, Adel M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>202007</creationdate><title>Robust feature learning method for epileptic seizures prediction based on long-term EEG signals</title><author>Baghdadi, Asma ; Fourati, Rahma ; Aribi, Yassine ; Siarry, Patrick ; Alimi, Adel M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-fd37d299e51199559dcdac0c2610d2d1447284473c882d9d48267c4f24c9388e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Brain modeling</topic><topic>Electroencephalography</topic><topic>epileptic seizures prediction</topic><topic>Feature extraction</topic><topic>feature learning</topic><topic>long-short term memory</topic><topic>Machine learning</topic><topic>raw EEG data</topic><topic>Scalp</topic><topic>Sensitivity</topic><toplevel>online_resources</toplevel><creatorcontrib>Baghdadi, Asma</creatorcontrib><creatorcontrib>Fourati, Rahma</creatorcontrib><creatorcontrib>Aribi, Yassine</creatorcontrib><creatorcontrib>Siarry, Patrick</creatorcontrib><creatorcontrib>Alimi, Adel M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Baghdadi, Asma</au><au>Fourati, Rahma</au><au>Aribi, Yassine</au><au>Siarry, Patrick</au><au>Alimi, Adel M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robust feature learning method for epileptic seizures prediction based on long-term EEG signals</atitle><btitle>2020 International Joint Conference on Neural Networks (IJCNN)</btitle><stitle>IJCNN</stitle><date>2020-07</date><risdate>2020</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><eissn>2161-4407</eissn><eisbn>1728169267</eisbn><eisbn>9781728169262</eisbn><abstract>Deep learning (DL) has been expensively applied in multiple fields like computer vision, speech recognition and natural language processing. The field of Epileptic seizure prediction didn't receive the deserved attention by DL community, even though, deep neural networks can handle the challenging task of onsets prediction whilst achieving the highest rates of sensitivity, despite the complex nature of EEG signals. In the literature, this issue was addressed differently most of the time using handcrafted temporal and spectral features, machine learning techniques and rarely deep learning with extracted features. In this paper, we introduce an LSTM model designed to address the chaotic nature of an EEG signal in order to predict pre-ictal and inter-ictal states. Our model is evaluated on the publicly available CHBMIT database. We achieved an average sensitivity rate of 0.84 using a Raw EEG data segment as input to the LSTM model.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN48605.2020.9207070</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2161-4407 |
ispartof | 2020 International Joint Conference on Neural Networks (IJCNN), 2020, p.1-7 |
issn | 2161-4407 |
language | eng |
recordid | cdi_ieee_primary_9207070 |
source | IEEE Xplore All Conference Series |
subjects | Brain modeling Electroencephalography epileptic seizures prediction Feature extraction feature learning long-short term memory Machine learning raw EEG data Scalp Sensitivity |
title | Robust feature learning method for epileptic seizures prediction based on long-term EEG signals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A22%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robust%20feature%20learning%20method%20for%20epileptic%20seizures%20prediction%20based%20on%20long-term%20EEG%20signals&rft.btitle=2020%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IJCNN)&rft.au=Baghdadi,%20Asma&rft.date=2020-07&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.eissn=2161-4407&rft_id=info:doi/10.1109/IJCNN48605.2020.9207070&rft.eisbn=1728169267&rft.eisbn_list=9781728169262&rft_dat=%3Cieee_CHZPO%3E9207070%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-fd37d299e51199559dcdac0c2610d2d1447284473c882d9d48267c4f24c9388e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9207070&rfr_iscdi=true |