Loading…

Robust feature learning method for epileptic seizures prediction based on long-term EEG signals

Deep learning (DL) has been expensively applied in multiple fields like computer vision, speech recognition and natural language processing. The field of Epileptic seizure prediction didn't receive the deserved attention by DL community, even though, deep neural networks can handle the challeng...

Full description

Saved in:
Bibliographic Details
Main Authors: Baghdadi, Asma, Fourati, Rahma, Aribi, Yassine, Siarry, Patrick, Alimi, Adel M.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-fd37d299e51199559dcdac0c2610d2d1447284473c882d9d48267c4f24c9388e3
cites
container_end_page 7
container_issue
container_start_page 1
container_title
container_volume
creator Baghdadi, Asma
Fourati, Rahma
Aribi, Yassine
Siarry, Patrick
Alimi, Adel M.
description Deep learning (DL) has been expensively applied in multiple fields like computer vision, speech recognition and natural language processing. The field of Epileptic seizure prediction didn't receive the deserved attention by DL community, even though, deep neural networks can handle the challenging task of onsets prediction whilst achieving the highest rates of sensitivity, despite the complex nature of EEG signals. In the literature, this issue was addressed differently most of the time using handcrafted temporal and spectral features, machine learning techniques and rarely deep learning with extracted features. In this paper, we introduce an LSTM model designed to address the chaotic nature of an EEG signal in order to predict pre-ictal and inter-ictal states. Our model is evaluated on the publicly available CHBMIT database. We achieved an average sensitivity rate of 0.84 using a Raw EEG data segment as input to the LSTM model.
doi_str_mv 10.1109/IJCNN48605.2020.9207070
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9207070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9207070</ieee_id><sourcerecordid>9207070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-fd37d299e51199559dcdac0c2610d2d1447284473c882d9d48267c4f24c9388e3</originalsourceid><addsrcrecordid>eNotUMFKAzEUjIJgW_0CD-YHtiYv2d28o5TaVkoF0XPZJm9rZLu7JOlBv96AZWBmDsPADGOPUsylFPi0eV3sdtpUopyDADFHEHXGFZvKGoysEKr6mk1AVrLQWtS3bBrjtxCgENWE7d-Hwzkm3lKTzoF4R03ofX_kJ0pfg-PtEDiNvqMxecsj-d-cinwM5LxNfuj5oYnkeDbd0B-LROHEl8sVj_7YN128YzdtFrq_6Ix9viw_Futi-7baLJ63hQWUqWidqh0gUiklYlmis66xwkIlhQMntc5jMilrDDh02uRZVregLSpjSM3Yw3-vJ6L9GPypCT_7yxnqD_hrVQA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Robust feature learning method for epileptic seizures prediction based on long-term EEG signals</title><source>IEEE Xplore All Conference Series</source><creator>Baghdadi, Asma ; Fourati, Rahma ; Aribi, Yassine ; Siarry, Patrick ; Alimi, Adel M.</creator><creatorcontrib>Baghdadi, Asma ; Fourati, Rahma ; Aribi, Yassine ; Siarry, Patrick ; Alimi, Adel M.</creatorcontrib><description>Deep learning (DL) has been expensively applied in multiple fields like computer vision, speech recognition and natural language processing. The field of Epileptic seizure prediction didn't receive the deserved attention by DL community, even though, deep neural networks can handle the challenging task of onsets prediction whilst achieving the highest rates of sensitivity, despite the complex nature of EEG signals. In the literature, this issue was addressed differently most of the time using handcrafted temporal and spectral features, machine learning techniques and rarely deep learning with extracted features. In this paper, we introduce an LSTM model designed to address the chaotic nature of an EEG signal in order to predict pre-ictal and inter-ictal states. Our model is evaluated on the publicly available CHBMIT database. We achieved an average sensitivity rate of 0.84 using a Raw EEG data segment as input to the LSTM model.</description><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 1728169267</identifier><identifier>EISBN: 9781728169262</identifier><identifier>DOI: 10.1109/IJCNN48605.2020.9207070</identifier><language>eng</language><publisher>IEEE</publisher><subject>Brain modeling ; Electroencephalography ; epileptic seizures prediction ; Feature extraction ; feature learning ; long-short term memory ; Machine learning ; raw EEG data ; Scalp ; Sensitivity</subject><ispartof>2020 International Joint Conference on Neural Networks (IJCNN), 2020, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-fd37d299e51199559dcdac0c2610d2d1447284473c882d9d48267c4f24c9388e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9207070$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9207070$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Baghdadi, Asma</creatorcontrib><creatorcontrib>Fourati, Rahma</creatorcontrib><creatorcontrib>Aribi, Yassine</creatorcontrib><creatorcontrib>Siarry, Patrick</creatorcontrib><creatorcontrib>Alimi, Adel M.</creatorcontrib><title>Robust feature learning method for epileptic seizures prediction based on long-term EEG signals</title><title>2020 International Joint Conference on Neural Networks (IJCNN)</title><addtitle>IJCNN</addtitle><description>Deep learning (DL) has been expensively applied in multiple fields like computer vision, speech recognition and natural language processing. The field of Epileptic seizure prediction didn't receive the deserved attention by DL community, even though, deep neural networks can handle the challenging task of onsets prediction whilst achieving the highest rates of sensitivity, despite the complex nature of EEG signals. In the literature, this issue was addressed differently most of the time using handcrafted temporal and spectral features, machine learning techniques and rarely deep learning with extracted features. In this paper, we introduce an LSTM model designed to address the chaotic nature of an EEG signal in order to predict pre-ictal and inter-ictal states. Our model is evaluated on the publicly available CHBMIT database. We achieved an average sensitivity rate of 0.84 using a Raw EEG data segment as input to the LSTM model.</description><subject>Brain modeling</subject><subject>Electroencephalography</subject><subject>epileptic seizures prediction</subject><subject>Feature extraction</subject><subject>feature learning</subject><subject>long-short term memory</subject><subject>Machine learning</subject><subject>raw EEG data</subject><subject>Scalp</subject><subject>Sensitivity</subject><issn>2161-4407</issn><isbn>1728169267</isbn><isbn>9781728169262</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotUMFKAzEUjIJgW_0CD-YHtiYv2d28o5TaVkoF0XPZJm9rZLu7JOlBv96AZWBmDsPADGOPUsylFPi0eV3sdtpUopyDADFHEHXGFZvKGoysEKr6mk1AVrLQWtS3bBrjtxCgENWE7d-Hwzkm3lKTzoF4R03ofX_kJ0pfg-PtEDiNvqMxecsj-d-cinwM5LxNfuj5oYnkeDbd0B-LROHEl8sVj_7YN128YzdtFrq_6Ix9viw_Futi-7baLJ63hQWUqWidqh0gUiklYlmis66xwkIlhQMntc5jMilrDDh02uRZVregLSpjSM3Yw3-vJ6L9GPypCT_7yxnqD_hrVQA</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Baghdadi, Asma</creator><creator>Fourati, Rahma</creator><creator>Aribi, Yassine</creator><creator>Siarry, Patrick</creator><creator>Alimi, Adel M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>202007</creationdate><title>Robust feature learning method for epileptic seizures prediction based on long-term EEG signals</title><author>Baghdadi, Asma ; Fourati, Rahma ; Aribi, Yassine ; Siarry, Patrick ; Alimi, Adel M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-fd37d299e51199559dcdac0c2610d2d1447284473c882d9d48267c4f24c9388e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Brain modeling</topic><topic>Electroencephalography</topic><topic>epileptic seizures prediction</topic><topic>Feature extraction</topic><topic>feature learning</topic><topic>long-short term memory</topic><topic>Machine learning</topic><topic>raw EEG data</topic><topic>Scalp</topic><topic>Sensitivity</topic><toplevel>online_resources</toplevel><creatorcontrib>Baghdadi, Asma</creatorcontrib><creatorcontrib>Fourati, Rahma</creatorcontrib><creatorcontrib>Aribi, Yassine</creatorcontrib><creatorcontrib>Siarry, Patrick</creatorcontrib><creatorcontrib>Alimi, Adel M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Baghdadi, Asma</au><au>Fourati, Rahma</au><au>Aribi, Yassine</au><au>Siarry, Patrick</au><au>Alimi, Adel M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robust feature learning method for epileptic seizures prediction based on long-term EEG signals</atitle><btitle>2020 International Joint Conference on Neural Networks (IJCNN)</btitle><stitle>IJCNN</stitle><date>2020-07</date><risdate>2020</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><eissn>2161-4407</eissn><eisbn>1728169267</eisbn><eisbn>9781728169262</eisbn><abstract>Deep learning (DL) has been expensively applied in multiple fields like computer vision, speech recognition and natural language processing. The field of Epileptic seizure prediction didn't receive the deserved attention by DL community, even though, deep neural networks can handle the challenging task of onsets prediction whilst achieving the highest rates of sensitivity, despite the complex nature of EEG signals. In the literature, this issue was addressed differently most of the time using handcrafted temporal and spectral features, machine learning techniques and rarely deep learning with extracted features. In this paper, we introduce an LSTM model designed to address the chaotic nature of an EEG signal in order to predict pre-ictal and inter-ictal states. Our model is evaluated on the publicly available CHBMIT database. We achieved an average sensitivity rate of 0.84 using a Raw EEG data segment as input to the LSTM model.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN48605.2020.9207070</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2161-4407
ispartof 2020 International Joint Conference on Neural Networks (IJCNN), 2020, p.1-7
issn 2161-4407
language eng
recordid cdi_ieee_primary_9207070
source IEEE Xplore All Conference Series
subjects Brain modeling
Electroencephalography
epileptic seizures prediction
Feature extraction
feature learning
long-short term memory
Machine learning
raw EEG data
Scalp
Sensitivity
title Robust feature learning method for epileptic seizures prediction based on long-term EEG signals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A22%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robust%20feature%20learning%20method%20for%20epileptic%20seizures%20prediction%20based%20on%20long-term%20EEG%20signals&rft.btitle=2020%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IJCNN)&rft.au=Baghdadi,%20Asma&rft.date=2020-07&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.eissn=2161-4407&rft_id=info:doi/10.1109/IJCNN48605.2020.9207070&rft.eisbn=1728169267&rft.eisbn_list=9781728169262&rft_dat=%3Cieee_CHZPO%3E9207070%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-fd37d299e51199559dcdac0c2610d2d1447284473c882d9d48267c4f24c9388e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9207070&rfr_iscdi=true