Loading…

On the evaluation of dynamic selection parameters for time series forecasting

Dynamic predictor selection has been applied to time series context to improve the accuracy to forecast. A crucial step in dynamic selection methods if the definition of the region of competence, which is composed of the most similar patterns to a test pattern, because the predictor that attains the...

Full description

Saved in:
Bibliographic Details
Main Authors: Silva, Eraylson. G., Cavalcanti, George D. C., de Oliveira, Joao Fausto L., de Mattos Neto, Paulo S. G.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7
container_issue
container_start_page 1
container_title
container_volume
creator Silva, Eraylson. G.
Cavalcanti, George D. C.
de Oliveira, Joao Fausto L.
de Mattos Neto, Paulo S. G.
description Dynamic predictor selection has been applied to time series context to improve the accuracy to forecast. A crucial step in dynamic selection methods if the definition of the region of competence, which is composed of the most similar patterns to a test pattern, because the predictor that attains the best performance in this region is selected to forecast this test pattern. The performance of dynamic selection methods depends on two main parameters, the size of the region of competence and the similarity measure (also called of distance measure). This work evaluates the influence of these parameters on six real-world time series to forecasting one step. In the experiments, Bagging is adopted to generate a pool of predictors, where the best predictor is selected per query pattern based on its performance on the region of competence. The results show that the choice of an appropriate distance measure, as well as the size of the region of competence, is mandatory to boost the performance of the prediction system. Moreover, the results reinforce the importance of using a dynamic selection approach to improve forecasting accuracy when compared to the monolithic models, also called of single models.
doi_str_mv 10.1109/IJCNN48605.2020.9207222
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9207222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9207222</ieee_id><sourcerecordid>9207222</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-8851ba3b9f4f4a2856d1a3fcfc285022b1accbf008ccbf618f187c5a37039b2e3</originalsourceid><addsrcrecordid>eNotj8tOwzAQRQ0SEm3hC1jgH0gZj5PYXqKIR1FpN7CuJu4YjPKoEoPUv6eUrs59SFe6QtwqmCsF7m7xUq1WuS2hmCMgzB2CQcQzMVUGrSodluZcTFCVKstzMJdiOo5fAKid0xPxuu5k-mTJP9R8U4p9J_sgt_uO2ujlyA37Y7ijgVpOPIwy9INMseVDO0Q-evY0pth9XImLQM3I1yfOxPvjw1v1nC3XT4vqfplFBJ0yawtVk65dyENOaItyq0gHH_xBA2KtyPs6ANg_lMoGZY0vSBvQrkbWM3HzvxuZebMbYkvDfnO6rn8BgVlP2Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On the evaluation of dynamic selection parameters for time series forecasting</title><source>IEEE Xplore All Conference Series</source><creator>Silva, Eraylson. G. ; Cavalcanti, George D. C. ; de Oliveira, Joao Fausto L. ; de Mattos Neto, Paulo S. G.</creator><creatorcontrib>Silva, Eraylson. G. ; Cavalcanti, George D. C. ; de Oliveira, Joao Fausto L. ; de Mattos Neto, Paulo S. G.</creatorcontrib><description>Dynamic predictor selection has been applied to time series context to improve the accuracy to forecast. A crucial step in dynamic selection methods if the definition of the region of competence, which is composed of the most similar patterns to a test pattern, because the predictor that attains the best performance in this region is selected to forecast this test pattern. The performance of dynamic selection methods depends on two main parameters, the size of the region of competence and the similarity measure (also called of distance measure). This work evaluates the influence of these parameters on six real-world time series to forecasting one step. In the experiments, Bagging is adopted to generate a pool of predictors, where the best predictor is selected per query pattern based on its performance on the region of competence. The results show that the choice of an appropriate distance measure, as well as the size of the region of competence, is mandatory to boost the performance of the prediction system. Moreover, the results reinforce the importance of using a dynamic selection approach to improve forecasting accuracy when compared to the monolithic models, also called of single models.</description><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 1728169267</identifier><identifier>EISBN: 9781728169262</identifier><identifier>DOI: 10.1109/IJCNN48605.2020.9207222</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological system modeling ; Forecasting ; Predictive models ; Task analysis ; Time measurement ; Time series analysis ; Training</subject><ispartof>2020 International Joint Conference on Neural Networks (IJCNN), 2020, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9207222$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,23911,23912,25121,27906,54536,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9207222$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Silva, Eraylson. G.</creatorcontrib><creatorcontrib>Cavalcanti, George D. C.</creatorcontrib><creatorcontrib>de Oliveira, Joao Fausto L.</creatorcontrib><creatorcontrib>de Mattos Neto, Paulo S. G.</creatorcontrib><title>On the evaluation of dynamic selection parameters for time series forecasting</title><title>2020 International Joint Conference on Neural Networks (IJCNN)</title><addtitle>IJCNN</addtitle><description>Dynamic predictor selection has been applied to time series context to improve the accuracy to forecast. A crucial step in dynamic selection methods if the definition of the region of competence, which is composed of the most similar patterns to a test pattern, because the predictor that attains the best performance in this region is selected to forecast this test pattern. The performance of dynamic selection methods depends on two main parameters, the size of the region of competence and the similarity measure (also called of distance measure). This work evaluates the influence of these parameters on six real-world time series to forecasting one step. In the experiments, Bagging is adopted to generate a pool of predictors, where the best predictor is selected per query pattern based on its performance on the region of competence. The results show that the choice of an appropriate distance measure, as well as the size of the region of competence, is mandatory to boost the performance of the prediction system. Moreover, the results reinforce the importance of using a dynamic selection approach to improve forecasting accuracy when compared to the monolithic models, also called of single models.</description><subject>Biological system modeling</subject><subject>Forecasting</subject><subject>Predictive models</subject><subject>Task analysis</subject><subject>Time measurement</subject><subject>Time series analysis</subject><subject>Training</subject><issn>2161-4407</issn><isbn>1728169267</isbn><isbn>9781728169262</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tOwzAQRQ0SEm3hC1jgH0gZj5PYXqKIR1FpN7CuJu4YjPKoEoPUv6eUrs59SFe6QtwqmCsF7m7xUq1WuS2hmCMgzB2CQcQzMVUGrSodluZcTFCVKstzMJdiOo5fAKid0xPxuu5k-mTJP9R8U4p9J_sgt_uO2ujlyA37Y7ijgVpOPIwy9INMseVDO0Q-evY0pth9XImLQM3I1yfOxPvjw1v1nC3XT4vqfplFBJ0yawtVk65dyENOaItyq0gHH_xBA2KtyPs6ANg_lMoGZY0vSBvQrkbWM3HzvxuZebMbYkvDfnO6rn8BgVlP2Q</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Silva, Eraylson. G.</creator><creator>Cavalcanti, George D. C.</creator><creator>de Oliveira, Joao Fausto L.</creator><creator>de Mattos Neto, Paulo S. G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>202007</creationdate><title>On the evaluation of dynamic selection parameters for time series forecasting</title><author>Silva, Eraylson. G. ; Cavalcanti, George D. C. ; de Oliveira, Joao Fausto L. ; de Mattos Neto, Paulo S. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-8851ba3b9f4f4a2856d1a3fcfc285022b1accbf008ccbf618f187c5a37039b2e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological system modeling</topic><topic>Forecasting</topic><topic>Predictive models</topic><topic>Task analysis</topic><topic>Time measurement</topic><topic>Time series analysis</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Silva, Eraylson. G.</creatorcontrib><creatorcontrib>Cavalcanti, George D. C.</creatorcontrib><creatorcontrib>de Oliveira, Joao Fausto L.</creatorcontrib><creatorcontrib>de Mattos Neto, Paulo S. G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Silva, Eraylson. G.</au><au>Cavalcanti, George D. C.</au><au>de Oliveira, Joao Fausto L.</au><au>de Mattos Neto, Paulo S. G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On the evaluation of dynamic selection parameters for time series forecasting</atitle><btitle>2020 International Joint Conference on Neural Networks (IJCNN)</btitle><stitle>IJCNN</stitle><date>2020-07</date><risdate>2020</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><eissn>2161-4407</eissn><eisbn>1728169267</eisbn><eisbn>9781728169262</eisbn><abstract>Dynamic predictor selection has been applied to time series context to improve the accuracy to forecast. A crucial step in dynamic selection methods if the definition of the region of competence, which is composed of the most similar patterns to a test pattern, because the predictor that attains the best performance in this region is selected to forecast this test pattern. The performance of dynamic selection methods depends on two main parameters, the size of the region of competence and the similarity measure (also called of distance measure). This work evaluates the influence of these parameters on six real-world time series to forecasting one step. In the experiments, Bagging is adopted to generate a pool of predictors, where the best predictor is selected per query pattern based on its performance on the region of competence. The results show that the choice of an appropriate distance measure, as well as the size of the region of competence, is mandatory to boost the performance of the prediction system. Moreover, the results reinforce the importance of using a dynamic selection approach to improve forecasting accuracy when compared to the monolithic models, also called of single models.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN48605.2020.9207222</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2161-4407
ispartof 2020 International Joint Conference on Neural Networks (IJCNN), 2020, p.1-7
issn 2161-4407
language eng
recordid cdi_ieee_primary_9207222
source IEEE Xplore All Conference Series
subjects Biological system modeling
Forecasting
Predictive models
Task analysis
Time measurement
Time series analysis
Training
title On the evaluation of dynamic selection parameters for time series forecasting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A38%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20the%20evaluation%20of%20dynamic%20selection%20parameters%20for%20time%20series%20forecasting&rft.btitle=2020%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IJCNN)&rft.au=Silva,%20Eraylson.%20G.&rft.date=2020-07&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.eissn=2161-4407&rft_id=info:doi/10.1109/IJCNN48605.2020.9207222&rft.eisbn=1728169267&rft.eisbn_list=9781728169262&rft_dat=%3Cieee_CHZPO%3E9207222%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-8851ba3b9f4f4a2856d1a3fcfc285022b1accbf008ccbf618f187c5a37039b2e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9207222&rfr_iscdi=true