Loading…
Beam Steering Using Active Artificial Magnetic Conductors: A 10-Degree Step Controlled Steering
An Active Artificial Magnetic Conductor (AAMC) is presented to steer the radiation pattern of a printed dipole working at 2 GHz. The elements that generates the phase shift are a set of Varactor Diodes, which are characterized using its spice model in order to obtain a phase shift - capacitance mapp...
Saved in:
Published in: | IEEE access 2020, Vol.8, p.177964-177975 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-7d6fde10b1d009dabb8c9ea5a95a79dd89d4b319cb6c272cfc982b9592510fb33 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-7d6fde10b1d009dabb8c9ea5a95a79dd89d4b319cb6c272cfc982b9592510fb33 |
container_end_page | 177975 |
container_issue | |
container_start_page | 177964 |
container_title | IEEE access |
container_volume | 8 |
creator | Vasquez-Peralvo, Juan Andres Fernandez-Gonzalez, Jose Manuel Rigelsford, Jonathan M. |
description | An Active Artificial Magnetic Conductor (AAMC) is presented to steer the radiation pattern of a printed dipole working at 2 GHz. The elements that generates the phase shift are a set of Varactor Diodes, which are characterized using its spice model in order to obtain a phase shift - capacitance mapping. Overall beam steering of +/- 40° with a step size of 10° is achieved. A circuit model that describes any multilayer substrate AAMC unit cell, which uses fist form of Foster's theorem along with transmission line theory, is proposed. Our work is suitable to be used as low profile antenna; for example, street furniture antennas, which are located on the facades of houses or buildings, so that they can be visually mixed up with signs or advertisements. Simulations have been validated using a prototype consisting of an array of 22\times 14 AAMC elements; the overall structure measures 1.9 \lambda _{0}\times 1.21 \lambda _{0} . This reflector will generate a phase gradient in its columns, which will modify the reflection angle of an incident electromagnetic wave in the H-Plane. Beam switching control has been achieved using suitably amplified LPF PWM signals generated by two Arduino modules. A printed dipole with a Fractional Bandwidth of 17% is designed and manufactured to illuminate the structure at a distance \lambda _{0}/4 above the surface. Far-field radiation patterns and reflection coefficients have been measured in an anechoic chamber using a spherical system. These compare favorably with simulations performed using the Time Domain solver in CST Microwave Studio. |
doi_str_mv | 10.1109/ACCESS.2020.3027141 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9207728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9207728</ieee_id><doaj_id>oai_doaj_org_article_26cc8863c36645aa84bc4d635a3a239a</doaj_id><sourcerecordid>2454678940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-7d6fde10b1d009dabb8c9ea5a95a79dd89d4b319cb6c272cfc982b9592510fb33</originalsourceid><addsrcrecordid>eNpNkU1LxDAQhosoKOov8FLw3DXfTbzV-gmKh9VzmCbTJUvdrGlX8N_bWlmcQ2aYzPtMwptlF5QsKCXmqqrru-VywQgjC05YSQU9yE4YVabgkqvDf_Vxdt73azKGHluyPMnsDcJHvhwQU9is8vd-Ois3hC_MqzSENrgAXf4Cqw0OweV13PidG2Lqr_Mqp6S4xVVCnAjb6XJIsevQ74ln2VELXY_nf_k0e7-_e6sfi-fXh6e6ei6cIHooSq9aj5Q01BNiPDSNdgZBgpFQGu-18aLh1LhGOVYy1zqjWWOkYZKStuH8NHuauT7C2m5T-ID0bSME-9uIaWVh_I7r0DLlnNaKO66UkABaNE54xSVwYNzAyLqcWdsUP3fYD3Ydd2kzPt8yIYUqtRFknOLzlEux7xO2-62U2MkYOxtjJ2PsnzGj6mJWBUTcKwwjZck0_wFaNYiQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454678940</pqid></control><display><type>article</type><title>Beam Steering Using Active Artificial Magnetic Conductors: A 10-Degree Step Controlled Steering</title><source>IEEE Xplore Open Access Journals</source><creator>Vasquez-Peralvo, Juan Andres ; Fernandez-Gonzalez, Jose Manuel ; Rigelsford, Jonathan M.</creator><creatorcontrib>Vasquez-Peralvo, Juan Andres ; Fernandez-Gonzalez, Jose Manuel ; Rigelsford, Jonathan M.</creatorcontrib><description><![CDATA[An Active Artificial Magnetic Conductor (AAMC) is presented to steer the radiation pattern of a printed dipole working at 2 GHz. The elements that generates the phase shift are a set of Varactor Diodes, which are characterized using its spice model in order to obtain a phase shift - capacitance mapping. Overall beam steering of +/- 40° with a step size of 10° is achieved. A circuit model that describes any multilayer substrate AAMC unit cell, which uses fist form of Foster's theorem along with transmission line theory, is proposed. Our work is suitable to be used as low profile antenna; for example, street furniture antennas, which are located on the facades of houses or buildings, so that they can be visually mixed up with signs or advertisements. Simulations have been validated using a prototype consisting of an array of <inline-formula> <tex-math notation="LaTeX">22\times 14 </tex-math></inline-formula> AAMC elements; the overall structure measures <inline-formula> <tex-math notation="LaTeX">1.9 \lambda _{0}\times 1.21 \lambda _{0} </tex-math></inline-formula>. This reflector will generate a phase gradient in its columns, which will modify the reflection angle of an incident electromagnetic wave in the H-Plane. Beam switching control has been achieved using suitably amplified LPF PWM signals generated by two Arduino modules. A printed dipole with a Fractional Bandwidth of 17% is designed and manufactured to illuminate the structure at a distance <inline-formula> <tex-math notation="LaTeX">\lambda _{0}/4 </tex-math></inline-formula> above the surface. Far-field radiation patterns and reflection coefficients have been measured in an anechoic chamber using a spherical system. These compare favorably with simulations performed using the Time Domain solver in CST Microwave Studio.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3027141</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Active control ; Analytical models ; Anechoic chambers ; Angle of reflection ; Antenna radiation patterns ; Antennas ; artificial magnetic conductors ; Bandwidths ; Beam steering ; Beam switching ; Circuits ; Columns (structural) ; Conductors ; Dielectrics ; Dipoles ; Electromagnetic radiation ; Equivalent circuits ; Far fields ; Frequency selective surfaces ; Houses ; Integrated circuit modeling ; Multilayers ; Phase shift ; Reflector antennas ; Street furniture ; Substrates ; Transmission lines ; Unit cell ; Varactor diodes</subject><ispartof>IEEE access, 2020, Vol.8, p.177964-177975</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-7d6fde10b1d009dabb8c9ea5a95a79dd89d4b319cb6c272cfc982b9592510fb33</citedby><cites>FETCH-LOGICAL-c408t-7d6fde10b1d009dabb8c9ea5a95a79dd89d4b319cb6c272cfc982b9592510fb33</cites><orcidid>0000-0002-9296-4098 ; 0000-0003-3630-0876 ; 0000-0001-7304-095X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9207728$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Vasquez-Peralvo, Juan Andres</creatorcontrib><creatorcontrib>Fernandez-Gonzalez, Jose Manuel</creatorcontrib><creatorcontrib>Rigelsford, Jonathan M.</creatorcontrib><title>Beam Steering Using Active Artificial Magnetic Conductors: A 10-Degree Step Controlled Steering</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[An Active Artificial Magnetic Conductor (AAMC) is presented to steer the radiation pattern of a printed dipole working at 2 GHz. The elements that generates the phase shift are a set of Varactor Diodes, which are characterized using its spice model in order to obtain a phase shift - capacitance mapping. Overall beam steering of +/- 40° with a step size of 10° is achieved. A circuit model that describes any multilayer substrate AAMC unit cell, which uses fist form of Foster's theorem along with transmission line theory, is proposed. Our work is suitable to be used as low profile antenna; for example, street furniture antennas, which are located on the facades of houses or buildings, so that they can be visually mixed up with signs or advertisements. Simulations have been validated using a prototype consisting of an array of <inline-formula> <tex-math notation="LaTeX">22\times 14 </tex-math></inline-formula> AAMC elements; the overall structure measures <inline-formula> <tex-math notation="LaTeX">1.9 \lambda _{0}\times 1.21 \lambda _{0} </tex-math></inline-formula>. This reflector will generate a phase gradient in its columns, which will modify the reflection angle of an incident electromagnetic wave in the H-Plane. Beam switching control has been achieved using suitably amplified LPF PWM signals generated by two Arduino modules. A printed dipole with a Fractional Bandwidth of 17% is designed and manufactured to illuminate the structure at a distance <inline-formula> <tex-math notation="LaTeX">\lambda _{0}/4 </tex-math></inline-formula> above the surface. Far-field radiation patterns and reflection coefficients have been measured in an anechoic chamber using a spherical system. These compare favorably with simulations performed using the Time Domain solver in CST Microwave Studio.]]></description><subject>Active control</subject><subject>Analytical models</subject><subject>Anechoic chambers</subject><subject>Angle of reflection</subject><subject>Antenna radiation patterns</subject><subject>Antennas</subject><subject>artificial magnetic conductors</subject><subject>Bandwidths</subject><subject>Beam steering</subject><subject>Beam switching</subject><subject>Circuits</subject><subject>Columns (structural)</subject><subject>Conductors</subject><subject>Dielectrics</subject><subject>Dipoles</subject><subject>Electromagnetic radiation</subject><subject>Equivalent circuits</subject><subject>Far fields</subject><subject>Frequency selective surfaces</subject><subject>Houses</subject><subject>Integrated circuit modeling</subject><subject>Multilayers</subject><subject>Phase shift</subject><subject>Reflector antennas</subject><subject>Street furniture</subject><subject>Substrates</subject><subject>Transmission lines</subject><subject>Unit cell</subject><subject>Varactor diodes</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1LxDAQhosoKOov8FLw3DXfTbzV-gmKh9VzmCbTJUvdrGlX8N_bWlmcQ2aYzPtMwptlF5QsKCXmqqrru-VywQgjC05YSQU9yE4YVabgkqvDf_Vxdt73azKGHluyPMnsDcJHvhwQU9is8vd-Ois3hC_MqzSENrgAXf4Cqw0OweV13PidG2Lqr_Mqp6S4xVVCnAjb6XJIsevQ74ln2VELXY_nf_k0e7-_e6sfi-fXh6e6ei6cIHooSq9aj5Q01BNiPDSNdgZBgpFQGu-18aLh1LhGOVYy1zqjWWOkYZKStuH8NHuauT7C2m5T-ID0bSME-9uIaWVh_I7r0DLlnNaKO66UkABaNE54xSVwYNzAyLqcWdsUP3fYD3Ydd2kzPt8yIYUqtRFknOLzlEux7xO2-62U2MkYOxtjJ2PsnzGj6mJWBUTcKwwjZck0_wFaNYiQ</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Vasquez-Peralvo, Juan Andres</creator><creator>Fernandez-Gonzalez, Jose Manuel</creator><creator>Rigelsford, Jonathan M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9296-4098</orcidid><orcidid>https://orcid.org/0000-0003-3630-0876</orcidid><orcidid>https://orcid.org/0000-0001-7304-095X</orcidid></search><sort><creationdate>2020</creationdate><title>Beam Steering Using Active Artificial Magnetic Conductors: A 10-Degree Step Controlled Steering</title><author>Vasquez-Peralvo, Juan Andres ; Fernandez-Gonzalez, Jose Manuel ; Rigelsford, Jonathan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-7d6fde10b1d009dabb8c9ea5a95a79dd89d4b319cb6c272cfc982b9592510fb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Active control</topic><topic>Analytical models</topic><topic>Anechoic chambers</topic><topic>Angle of reflection</topic><topic>Antenna radiation patterns</topic><topic>Antennas</topic><topic>artificial magnetic conductors</topic><topic>Bandwidths</topic><topic>Beam steering</topic><topic>Beam switching</topic><topic>Circuits</topic><topic>Columns (structural)</topic><topic>Conductors</topic><topic>Dielectrics</topic><topic>Dipoles</topic><topic>Electromagnetic radiation</topic><topic>Equivalent circuits</topic><topic>Far fields</topic><topic>Frequency selective surfaces</topic><topic>Houses</topic><topic>Integrated circuit modeling</topic><topic>Multilayers</topic><topic>Phase shift</topic><topic>Reflector antennas</topic><topic>Street furniture</topic><topic>Substrates</topic><topic>Transmission lines</topic><topic>Unit cell</topic><topic>Varactor diodes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasquez-Peralvo, Juan Andres</creatorcontrib><creatorcontrib>Fernandez-Gonzalez, Jose Manuel</creatorcontrib><creatorcontrib>Rigelsford, Jonathan M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasquez-Peralvo, Juan Andres</au><au>Fernandez-Gonzalez, Jose Manuel</au><au>Rigelsford, Jonathan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beam Steering Using Active Artificial Magnetic Conductors: A 10-Degree Step Controlled Steering</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>177964</spage><epage>177975</epage><pages>177964-177975</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[An Active Artificial Magnetic Conductor (AAMC) is presented to steer the radiation pattern of a printed dipole working at 2 GHz. The elements that generates the phase shift are a set of Varactor Diodes, which are characterized using its spice model in order to obtain a phase shift - capacitance mapping. Overall beam steering of +/- 40° with a step size of 10° is achieved. A circuit model that describes any multilayer substrate AAMC unit cell, which uses fist form of Foster's theorem along with transmission line theory, is proposed. Our work is suitable to be used as low profile antenna; for example, street furniture antennas, which are located on the facades of houses or buildings, so that they can be visually mixed up with signs or advertisements. Simulations have been validated using a prototype consisting of an array of <inline-formula> <tex-math notation="LaTeX">22\times 14 </tex-math></inline-formula> AAMC elements; the overall structure measures <inline-formula> <tex-math notation="LaTeX">1.9 \lambda _{0}\times 1.21 \lambda _{0} </tex-math></inline-formula>. This reflector will generate a phase gradient in its columns, which will modify the reflection angle of an incident electromagnetic wave in the H-Plane. Beam switching control has been achieved using suitably amplified LPF PWM signals generated by two Arduino modules. A printed dipole with a Fractional Bandwidth of 17% is designed and manufactured to illuminate the structure at a distance <inline-formula> <tex-math notation="LaTeX">\lambda _{0}/4 </tex-math></inline-formula> above the surface. Far-field radiation patterns and reflection coefficients have been measured in an anechoic chamber using a spherical system. These compare favorably with simulations performed using the Time Domain solver in CST Microwave Studio.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3027141</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9296-4098</orcidid><orcidid>https://orcid.org/0000-0003-3630-0876</orcidid><orcidid>https://orcid.org/0000-0001-7304-095X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.177964-177975 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9207728 |
source | IEEE Xplore Open Access Journals |
subjects | Active control Analytical models Anechoic chambers Angle of reflection Antenna radiation patterns Antennas artificial magnetic conductors Bandwidths Beam steering Beam switching Circuits Columns (structural) Conductors Dielectrics Dipoles Electromagnetic radiation Equivalent circuits Far fields Frequency selective surfaces Houses Integrated circuit modeling Multilayers Phase shift Reflector antennas Street furniture Substrates Transmission lines Unit cell Varactor diodes |
title | Beam Steering Using Active Artificial Magnetic Conductors: A 10-Degree Step Controlled Steering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A23%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beam%20Steering%20Using%20Active%20Artificial%20Magnetic%20Conductors:%20A%2010-Degree%20Step%20Controlled%20Steering&rft.jtitle=IEEE%20access&rft.au=Vasquez-Peralvo,%20Juan%20Andres&rft.date=2020&rft.volume=8&rft.spage=177964&rft.epage=177975&rft.pages=177964-177975&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3027141&rft_dat=%3Cproquest_ieee_%3E2454678940%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-7d6fde10b1d009dabb8c9ea5a95a79dd89d4b319cb6c272cfc982b9592510fb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454678940&rft_id=info:pmid/&rft_ieee_id=9207728&rfr_iscdi=true |