Loading…

Beam Steering Using Active Artificial Magnetic Conductors: A 10-Degree Step Controlled Steering

An Active Artificial Magnetic Conductor (AAMC) is presented to steer the radiation pattern of a printed dipole working at 2 GHz. The elements that generates the phase shift are a set of Varactor Diodes, which are characterized using its spice model in order to obtain a phase shift - capacitance mapp...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020, Vol.8, p.177964-177975
Main Authors: Vasquez-Peralvo, Juan Andres, Fernandez-Gonzalez, Jose Manuel, Rigelsford, Jonathan M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-7d6fde10b1d009dabb8c9ea5a95a79dd89d4b319cb6c272cfc982b9592510fb33
cites cdi_FETCH-LOGICAL-c408t-7d6fde10b1d009dabb8c9ea5a95a79dd89d4b319cb6c272cfc982b9592510fb33
container_end_page 177975
container_issue
container_start_page 177964
container_title IEEE access
container_volume 8
creator Vasquez-Peralvo, Juan Andres
Fernandez-Gonzalez, Jose Manuel
Rigelsford, Jonathan M.
description An Active Artificial Magnetic Conductor (AAMC) is presented to steer the radiation pattern of a printed dipole working at 2 GHz. The elements that generates the phase shift are a set of Varactor Diodes, which are characterized using its spice model in order to obtain a phase shift - capacitance mapping. Overall beam steering of +/- 40° with a step size of 10° is achieved. A circuit model that describes any multilayer substrate AAMC unit cell, which uses fist form of Foster's theorem along with transmission line theory, is proposed. Our work is suitable to be used as low profile antenna; for example, street furniture antennas, which are located on the facades of houses or buildings, so that they can be visually mixed up with signs or advertisements. Simulations have been validated using a prototype consisting of an array of 22\times 14 AAMC elements; the overall structure measures 1.9 \lambda _{0}\times 1.21 \lambda _{0} . This reflector will generate a phase gradient in its columns, which will modify the reflection angle of an incident electromagnetic wave in the H-Plane. Beam switching control has been achieved using suitably amplified LPF PWM signals generated by two Arduino modules. A printed dipole with a Fractional Bandwidth of 17% is designed and manufactured to illuminate the structure at a distance \lambda _{0}/4 above the surface. Far-field radiation patterns and reflection coefficients have been measured in an anechoic chamber using a spherical system. These compare favorably with simulations performed using the Time Domain solver in CST Microwave Studio.
doi_str_mv 10.1109/ACCESS.2020.3027141
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9207728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9207728</ieee_id><doaj_id>oai_doaj_org_article_26cc8863c36645aa84bc4d635a3a239a</doaj_id><sourcerecordid>2454678940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-7d6fde10b1d009dabb8c9ea5a95a79dd89d4b319cb6c272cfc982b9592510fb33</originalsourceid><addsrcrecordid>eNpNkU1LxDAQhosoKOov8FLw3DXfTbzV-gmKh9VzmCbTJUvdrGlX8N_bWlmcQ2aYzPtMwptlF5QsKCXmqqrru-VywQgjC05YSQU9yE4YVabgkqvDf_Vxdt73azKGHluyPMnsDcJHvhwQU9is8vd-Ois3hC_MqzSENrgAXf4Cqw0OweV13PidG2Lqr_Mqp6S4xVVCnAjb6XJIsevQ74ln2VELXY_nf_k0e7-_e6sfi-fXh6e6ei6cIHooSq9aj5Q01BNiPDSNdgZBgpFQGu-18aLh1LhGOVYy1zqjWWOkYZKStuH8NHuauT7C2m5T-ID0bSME-9uIaWVh_I7r0DLlnNaKO66UkABaNE54xSVwYNzAyLqcWdsUP3fYD3Ydd2kzPt8yIYUqtRFknOLzlEux7xO2-62U2MkYOxtjJ2PsnzGj6mJWBUTcKwwjZck0_wFaNYiQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454678940</pqid></control><display><type>article</type><title>Beam Steering Using Active Artificial Magnetic Conductors: A 10-Degree Step Controlled Steering</title><source>IEEE Xplore Open Access Journals</source><creator>Vasquez-Peralvo, Juan Andres ; Fernandez-Gonzalez, Jose Manuel ; Rigelsford, Jonathan M.</creator><creatorcontrib>Vasquez-Peralvo, Juan Andres ; Fernandez-Gonzalez, Jose Manuel ; Rigelsford, Jonathan M.</creatorcontrib><description><![CDATA[An Active Artificial Magnetic Conductor (AAMC) is presented to steer the radiation pattern of a printed dipole working at 2 GHz. The elements that generates the phase shift are a set of Varactor Diodes, which are characterized using its spice model in order to obtain a phase shift - capacitance mapping. Overall beam steering of +/- 40° with a step size of 10° is achieved. A circuit model that describes any multilayer substrate AAMC unit cell, which uses fist form of Foster's theorem along with transmission line theory, is proposed. Our work is suitable to be used as low profile antenna; for example, street furniture antennas, which are located on the facades of houses or buildings, so that they can be visually mixed up with signs or advertisements. Simulations have been validated using a prototype consisting of an array of <inline-formula> <tex-math notation="LaTeX">22\times 14 </tex-math></inline-formula> AAMC elements; the overall structure measures <inline-formula> <tex-math notation="LaTeX">1.9 \lambda _{0}\times 1.21 \lambda _{0} </tex-math></inline-formula>. This reflector will generate a phase gradient in its columns, which will modify the reflection angle of an incident electromagnetic wave in the H-Plane. Beam switching control has been achieved using suitably amplified LPF PWM signals generated by two Arduino modules. A printed dipole with a Fractional Bandwidth of 17% is designed and manufactured to illuminate the structure at a distance <inline-formula> <tex-math notation="LaTeX">\lambda _{0}/4 </tex-math></inline-formula> above the surface. Far-field radiation patterns and reflection coefficients have been measured in an anechoic chamber using a spherical system. These compare favorably with simulations performed using the Time Domain solver in CST Microwave Studio.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3027141</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Active control ; Analytical models ; Anechoic chambers ; Angle of reflection ; Antenna radiation patterns ; Antennas ; artificial magnetic conductors ; Bandwidths ; Beam steering ; Beam switching ; Circuits ; Columns (structural) ; Conductors ; Dielectrics ; Dipoles ; Electromagnetic radiation ; Equivalent circuits ; Far fields ; Frequency selective surfaces ; Houses ; Integrated circuit modeling ; Multilayers ; Phase shift ; Reflector antennas ; Street furniture ; Substrates ; Transmission lines ; Unit cell ; Varactor diodes</subject><ispartof>IEEE access, 2020, Vol.8, p.177964-177975</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-7d6fde10b1d009dabb8c9ea5a95a79dd89d4b319cb6c272cfc982b9592510fb33</citedby><cites>FETCH-LOGICAL-c408t-7d6fde10b1d009dabb8c9ea5a95a79dd89d4b319cb6c272cfc982b9592510fb33</cites><orcidid>0000-0002-9296-4098 ; 0000-0003-3630-0876 ; 0000-0001-7304-095X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9207728$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Vasquez-Peralvo, Juan Andres</creatorcontrib><creatorcontrib>Fernandez-Gonzalez, Jose Manuel</creatorcontrib><creatorcontrib>Rigelsford, Jonathan M.</creatorcontrib><title>Beam Steering Using Active Artificial Magnetic Conductors: A 10-Degree Step Controlled Steering</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[An Active Artificial Magnetic Conductor (AAMC) is presented to steer the radiation pattern of a printed dipole working at 2 GHz. The elements that generates the phase shift are a set of Varactor Diodes, which are characterized using its spice model in order to obtain a phase shift - capacitance mapping. Overall beam steering of +/- 40° with a step size of 10° is achieved. A circuit model that describes any multilayer substrate AAMC unit cell, which uses fist form of Foster's theorem along with transmission line theory, is proposed. Our work is suitable to be used as low profile antenna; for example, street furniture antennas, which are located on the facades of houses or buildings, so that they can be visually mixed up with signs or advertisements. Simulations have been validated using a prototype consisting of an array of <inline-formula> <tex-math notation="LaTeX">22\times 14 </tex-math></inline-formula> AAMC elements; the overall structure measures <inline-formula> <tex-math notation="LaTeX">1.9 \lambda _{0}\times 1.21 \lambda _{0} </tex-math></inline-formula>. This reflector will generate a phase gradient in its columns, which will modify the reflection angle of an incident electromagnetic wave in the H-Plane. Beam switching control has been achieved using suitably amplified LPF PWM signals generated by two Arduino modules. A printed dipole with a Fractional Bandwidth of 17% is designed and manufactured to illuminate the structure at a distance <inline-formula> <tex-math notation="LaTeX">\lambda _{0}/4 </tex-math></inline-formula> above the surface. Far-field radiation patterns and reflection coefficients have been measured in an anechoic chamber using a spherical system. These compare favorably with simulations performed using the Time Domain solver in CST Microwave Studio.]]></description><subject>Active control</subject><subject>Analytical models</subject><subject>Anechoic chambers</subject><subject>Angle of reflection</subject><subject>Antenna radiation patterns</subject><subject>Antennas</subject><subject>artificial magnetic conductors</subject><subject>Bandwidths</subject><subject>Beam steering</subject><subject>Beam switching</subject><subject>Circuits</subject><subject>Columns (structural)</subject><subject>Conductors</subject><subject>Dielectrics</subject><subject>Dipoles</subject><subject>Electromagnetic radiation</subject><subject>Equivalent circuits</subject><subject>Far fields</subject><subject>Frequency selective surfaces</subject><subject>Houses</subject><subject>Integrated circuit modeling</subject><subject>Multilayers</subject><subject>Phase shift</subject><subject>Reflector antennas</subject><subject>Street furniture</subject><subject>Substrates</subject><subject>Transmission lines</subject><subject>Unit cell</subject><subject>Varactor diodes</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1LxDAQhosoKOov8FLw3DXfTbzV-gmKh9VzmCbTJUvdrGlX8N_bWlmcQ2aYzPtMwptlF5QsKCXmqqrru-VywQgjC05YSQU9yE4YVabgkqvDf_Vxdt73azKGHluyPMnsDcJHvhwQU9is8vd-Ois3hC_MqzSENrgAXf4Cqw0OweV13PidG2Lqr_Mqp6S4xVVCnAjb6XJIsevQ74ln2VELXY_nf_k0e7-_e6sfi-fXh6e6ei6cIHooSq9aj5Q01BNiPDSNdgZBgpFQGu-18aLh1LhGOVYy1zqjWWOkYZKStuH8NHuauT7C2m5T-ID0bSME-9uIaWVh_I7r0DLlnNaKO66UkABaNE54xSVwYNzAyLqcWdsUP3fYD3Ydd2kzPt8yIYUqtRFknOLzlEux7xO2-62U2MkYOxtjJ2PsnzGj6mJWBUTcKwwjZck0_wFaNYiQ</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Vasquez-Peralvo, Juan Andres</creator><creator>Fernandez-Gonzalez, Jose Manuel</creator><creator>Rigelsford, Jonathan M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9296-4098</orcidid><orcidid>https://orcid.org/0000-0003-3630-0876</orcidid><orcidid>https://orcid.org/0000-0001-7304-095X</orcidid></search><sort><creationdate>2020</creationdate><title>Beam Steering Using Active Artificial Magnetic Conductors: A 10-Degree Step Controlled Steering</title><author>Vasquez-Peralvo, Juan Andres ; Fernandez-Gonzalez, Jose Manuel ; Rigelsford, Jonathan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-7d6fde10b1d009dabb8c9ea5a95a79dd89d4b319cb6c272cfc982b9592510fb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Active control</topic><topic>Analytical models</topic><topic>Anechoic chambers</topic><topic>Angle of reflection</topic><topic>Antenna radiation patterns</topic><topic>Antennas</topic><topic>artificial magnetic conductors</topic><topic>Bandwidths</topic><topic>Beam steering</topic><topic>Beam switching</topic><topic>Circuits</topic><topic>Columns (structural)</topic><topic>Conductors</topic><topic>Dielectrics</topic><topic>Dipoles</topic><topic>Electromagnetic radiation</topic><topic>Equivalent circuits</topic><topic>Far fields</topic><topic>Frequency selective surfaces</topic><topic>Houses</topic><topic>Integrated circuit modeling</topic><topic>Multilayers</topic><topic>Phase shift</topic><topic>Reflector antennas</topic><topic>Street furniture</topic><topic>Substrates</topic><topic>Transmission lines</topic><topic>Unit cell</topic><topic>Varactor diodes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasquez-Peralvo, Juan Andres</creatorcontrib><creatorcontrib>Fernandez-Gonzalez, Jose Manuel</creatorcontrib><creatorcontrib>Rigelsford, Jonathan M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasquez-Peralvo, Juan Andres</au><au>Fernandez-Gonzalez, Jose Manuel</au><au>Rigelsford, Jonathan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beam Steering Using Active Artificial Magnetic Conductors: A 10-Degree Step Controlled Steering</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>177964</spage><epage>177975</epage><pages>177964-177975</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[An Active Artificial Magnetic Conductor (AAMC) is presented to steer the radiation pattern of a printed dipole working at 2 GHz. The elements that generates the phase shift are a set of Varactor Diodes, which are characterized using its spice model in order to obtain a phase shift - capacitance mapping. Overall beam steering of +/- 40° with a step size of 10° is achieved. A circuit model that describes any multilayer substrate AAMC unit cell, which uses fist form of Foster's theorem along with transmission line theory, is proposed. Our work is suitable to be used as low profile antenna; for example, street furniture antennas, which are located on the facades of houses or buildings, so that they can be visually mixed up with signs or advertisements. Simulations have been validated using a prototype consisting of an array of <inline-formula> <tex-math notation="LaTeX">22\times 14 </tex-math></inline-formula> AAMC elements; the overall structure measures <inline-formula> <tex-math notation="LaTeX">1.9 \lambda _{0}\times 1.21 \lambda _{0} </tex-math></inline-formula>. This reflector will generate a phase gradient in its columns, which will modify the reflection angle of an incident electromagnetic wave in the H-Plane. Beam switching control has been achieved using suitably amplified LPF PWM signals generated by two Arduino modules. A printed dipole with a Fractional Bandwidth of 17% is designed and manufactured to illuminate the structure at a distance <inline-formula> <tex-math notation="LaTeX">\lambda _{0}/4 </tex-math></inline-formula> above the surface. Far-field radiation patterns and reflection coefficients have been measured in an anechoic chamber using a spherical system. These compare favorably with simulations performed using the Time Domain solver in CST Microwave Studio.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3027141</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9296-4098</orcidid><orcidid>https://orcid.org/0000-0003-3630-0876</orcidid><orcidid>https://orcid.org/0000-0001-7304-095X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.177964-177975
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9207728
source IEEE Xplore Open Access Journals
subjects Active control
Analytical models
Anechoic chambers
Angle of reflection
Antenna radiation patterns
Antennas
artificial magnetic conductors
Bandwidths
Beam steering
Beam switching
Circuits
Columns (structural)
Conductors
Dielectrics
Dipoles
Electromagnetic radiation
Equivalent circuits
Far fields
Frequency selective surfaces
Houses
Integrated circuit modeling
Multilayers
Phase shift
Reflector antennas
Street furniture
Substrates
Transmission lines
Unit cell
Varactor diodes
title Beam Steering Using Active Artificial Magnetic Conductors: A 10-Degree Step Controlled Steering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A23%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beam%20Steering%20Using%20Active%20Artificial%20Magnetic%20Conductors:%20A%2010-Degree%20Step%20Controlled%20Steering&rft.jtitle=IEEE%20access&rft.au=Vasquez-Peralvo,%20Juan%20Andres&rft.date=2020&rft.volume=8&rft.spage=177964&rft.epage=177975&rft.pages=177964-177975&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3027141&rft_dat=%3Cproquest_ieee_%3E2454678940%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-7d6fde10b1d009dabb8c9ea5a95a79dd89d4b319cb6c272cfc982b9592510fb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454678940&rft_id=info:pmid/&rft_ieee_id=9207728&rfr_iscdi=true