Loading…
Proposed Selection Technique of Evolutionary Algorithm and its implementation for Combinatorial Problems
The present paper proposed new selection techniques of the evolutionary algorithm. The nature of the evolutionary algorithm is probabilistic and randomized. Evolutionary algorithm work on Charles Darwin's principle of natural selection. This algorithm can be applied to various optimization prob...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 412 |
container_issue | |
container_start_page | 408 |
container_title | |
container_volume | |
creator | Kumar, Rajiv Memoria, Minakshi |
description | The present paper proposed new selection techniques of the evolutionary algorithm. The nature of the evolutionary algorithm is probabilistic and randomized. Evolutionary algorithm work on Charles Darwin's principle of natural selection. This algorithm can be applied to various optimization problems, such as scheduling, traveling salesman problems, Routing problems, or combinatorial problems. Evolutionary algorithms include Genetic algorithm, Memetic algorithm. The performance of the evolutionary algorithm depends upon its operators, such as selection techniques, crossover operators, mutation operator, and its parameter setting. The main focus of this paper is selection techniques. The proposed algorithm has been successfully implemented for the CPU scheduling problem. Experimental results show better results. |
doi_str_mv | 10.1109/ICACCM50413.2020.9213063 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9213063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9213063</ieee_id><sourcerecordid>9213063</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-79c95af15d4229845d8248255dba3da760f789296247cf41acbb0491e2d9a56f3</originalsourceid><addsrcrecordid>eNotUF9LwzAcjILgnPsEvuQLdOb3S9Ikj6PMPzBRcD6PtElspG1q2wl-e6vu6eC4O-6OEApsDcDM7WOxKYonyQTwNTJka4PAWc7PyBUo1GCUlvk5WWAuMFNcikuyGscPxhgHbbThC1K_DKlPo3f01Te-mmLq6N5XdRc_j56mQLdfqTn-0nb4ppvmPQ1xqltqO0fjNNLY9o1vfTfZP2tIAy1SW8bOTrPSNnTOL2fFeE0ugm1GvzrhkrzdbffFQ7Z7vp937LIIoKdMmcpIG0A6gWi0kE6j0CilKy13VuUsKG3Q5ChUFQTYqiyZMODRGSvzwJfk5j83eu8P_RDbufjhdAz_AfpTWlI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Proposed Selection Technique of Evolutionary Algorithm and its implementation for Combinatorial Problems</title><source>IEEE Xplore All Conference Series</source><creator>Kumar, Rajiv ; Memoria, Minakshi</creator><creatorcontrib>Kumar, Rajiv ; Memoria, Minakshi</creatorcontrib><description>The present paper proposed new selection techniques of the evolutionary algorithm. The nature of the evolutionary algorithm is probabilistic and randomized. Evolutionary algorithm work on Charles Darwin's principle of natural selection. This algorithm can be applied to various optimization problems, such as scheduling, traveling salesman problems, Routing problems, or combinatorial problems. Evolutionary algorithms include Genetic algorithm, Memetic algorithm. The performance of the evolutionary algorithm depends upon its operators, such as selection techniques, crossover operators, mutation operator, and its parameter setting. The main focus of this paper is selection techniques. The proposed algorithm has been successfully implemented for the CPU scheduling problem. Experimental results show better results.</description><identifier>EISSN: 2642-7354</identifier><identifier>EISBN: 1728197856</identifier><identifier>EISBN: 9781728197852</identifier><identifier>DOI: 10.1109/ICACCM50413.2020.9213063</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological cells ; Combinatorial Problems ; Evolutionary algorithm ; Evolutionary computation ; Genetic algorithms ; NP-hard ; Processor scheduling ; Scheduling ; Sociology ; Statistics</subject><ispartof>2020 International Conference on Advances in Computing, Communication & Materials (ICACCM), 2020, p.408-412</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9213063$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9213063$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kumar, Rajiv</creatorcontrib><creatorcontrib>Memoria, Minakshi</creatorcontrib><title>Proposed Selection Technique of Evolutionary Algorithm and its implementation for Combinatorial Problems</title><title>2020 International Conference on Advances in Computing, Communication & Materials (ICACCM)</title><addtitle>ICACCM</addtitle><description>The present paper proposed new selection techniques of the evolutionary algorithm. The nature of the evolutionary algorithm is probabilistic and randomized. Evolutionary algorithm work on Charles Darwin's principle of natural selection. This algorithm can be applied to various optimization problems, such as scheduling, traveling salesman problems, Routing problems, or combinatorial problems. Evolutionary algorithms include Genetic algorithm, Memetic algorithm. The performance of the evolutionary algorithm depends upon its operators, such as selection techniques, crossover operators, mutation operator, and its parameter setting. The main focus of this paper is selection techniques. The proposed algorithm has been successfully implemented for the CPU scheduling problem. Experimental results show better results.</description><subject>Biological cells</subject><subject>Combinatorial Problems</subject><subject>Evolutionary algorithm</subject><subject>Evolutionary computation</subject><subject>Genetic algorithms</subject><subject>NP-hard</subject><subject>Processor scheduling</subject><subject>Scheduling</subject><subject>Sociology</subject><subject>Statistics</subject><issn>2642-7354</issn><isbn>1728197856</isbn><isbn>9781728197852</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotUF9LwzAcjILgnPsEvuQLdOb3S9Ikj6PMPzBRcD6PtElspG1q2wl-e6vu6eC4O-6OEApsDcDM7WOxKYonyQTwNTJka4PAWc7PyBUo1GCUlvk5WWAuMFNcikuyGscPxhgHbbThC1K_DKlPo3f01Te-mmLq6N5XdRc_j56mQLdfqTn-0nb4ppvmPQ1xqltqO0fjNNLY9o1vfTfZP2tIAy1SW8bOTrPSNnTOL2fFeE0ugm1GvzrhkrzdbffFQ7Z7vp937LIIoKdMmcpIG0A6gWi0kE6j0CilKy13VuUsKG3Q5ChUFQTYqiyZMODRGSvzwJfk5j83eu8P_RDbufjhdAz_AfpTWlI</recordid><startdate>20200821</startdate><enddate>20200821</enddate><creator>Kumar, Rajiv</creator><creator>Memoria, Minakshi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20200821</creationdate><title>Proposed Selection Technique of Evolutionary Algorithm and its implementation for Combinatorial Problems</title><author>Kumar, Rajiv ; Memoria, Minakshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-79c95af15d4229845d8248255dba3da760f789296247cf41acbb0491e2d9a56f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological cells</topic><topic>Combinatorial Problems</topic><topic>Evolutionary algorithm</topic><topic>Evolutionary computation</topic><topic>Genetic algorithms</topic><topic>NP-hard</topic><topic>Processor scheduling</topic><topic>Scheduling</topic><topic>Sociology</topic><topic>Statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Rajiv</creatorcontrib><creatorcontrib>Memoria, Minakshi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kumar, Rajiv</au><au>Memoria, Minakshi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Proposed Selection Technique of Evolutionary Algorithm and its implementation for Combinatorial Problems</atitle><btitle>2020 International Conference on Advances in Computing, Communication & Materials (ICACCM)</btitle><stitle>ICACCM</stitle><date>2020-08-21</date><risdate>2020</risdate><spage>408</spage><epage>412</epage><pages>408-412</pages><eissn>2642-7354</eissn><eisbn>1728197856</eisbn><eisbn>9781728197852</eisbn><abstract>The present paper proposed new selection techniques of the evolutionary algorithm. The nature of the evolutionary algorithm is probabilistic and randomized. Evolutionary algorithm work on Charles Darwin's principle of natural selection. This algorithm can be applied to various optimization problems, such as scheduling, traveling salesman problems, Routing problems, or combinatorial problems. Evolutionary algorithms include Genetic algorithm, Memetic algorithm. The performance of the evolutionary algorithm depends upon its operators, such as selection techniques, crossover operators, mutation operator, and its parameter setting. The main focus of this paper is selection techniques. The proposed algorithm has been successfully implemented for the CPU scheduling problem. Experimental results show better results.</abstract><pub>IEEE</pub><doi>10.1109/ICACCM50413.2020.9213063</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2642-7354 |
ispartof | 2020 International Conference on Advances in Computing, Communication & Materials (ICACCM), 2020, p.408-412 |
issn | 2642-7354 |
language | eng |
recordid | cdi_ieee_primary_9213063 |
source | IEEE Xplore All Conference Series |
subjects | Biological cells Combinatorial Problems Evolutionary algorithm Evolutionary computation Genetic algorithms NP-hard Processor scheduling Scheduling Sociology Statistics |
title | Proposed Selection Technique of Evolutionary Algorithm and its implementation for Combinatorial Problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A23%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Proposed%20Selection%20Technique%20of%20Evolutionary%20Algorithm%20and%20its%20implementation%20for%20Combinatorial%20Problems&rft.btitle=2020%20International%20Conference%20on%20Advances%20in%20Computing,%20Communication%20&%20Materials%20(ICACCM)&rft.au=Kumar,%20Rajiv&rft.date=2020-08-21&rft.spage=408&rft.epage=412&rft.pages=408-412&rft.eissn=2642-7354&rft_id=info:doi/10.1109/ICACCM50413.2020.9213063&rft.eisbn=1728197856&rft.eisbn_list=9781728197852&rft_dat=%3Cieee_CHZPO%3E9213063%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-79c95af15d4229845d8248255dba3da760f789296247cf41acbb0491e2d9a56f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9213063&rfr_iscdi=true |