Loading…

Proposed Selection Technique of Evolutionary Algorithm and its implementation for Combinatorial Problems

The present paper proposed new selection techniques of the evolutionary algorithm. The nature of the evolutionary algorithm is probabilistic and randomized. Evolutionary algorithm work on Charles Darwin's principle of natural selection. This algorithm can be applied to various optimization prob...

Full description

Saved in:
Bibliographic Details
Main Authors: Kumar, Rajiv, Memoria, Minakshi
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 412
container_issue
container_start_page 408
container_title
container_volume
creator Kumar, Rajiv
Memoria, Minakshi
description The present paper proposed new selection techniques of the evolutionary algorithm. The nature of the evolutionary algorithm is probabilistic and randomized. Evolutionary algorithm work on Charles Darwin's principle of natural selection. This algorithm can be applied to various optimization problems, such as scheduling, traveling salesman problems, Routing problems, or combinatorial problems. Evolutionary algorithms include Genetic algorithm, Memetic algorithm. The performance of the evolutionary algorithm depends upon its operators, such as selection techniques, crossover operators, mutation operator, and its parameter setting. The main focus of this paper is selection techniques. The proposed algorithm has been successfully implemented for the CPU scheduling problem. Experimental results show better results.
doi_str_mv 10.1109/ICACCM50413.2020.9213063
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9213063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9213063</ieee_id><sourcerecordid>9213063</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-79c95af15d4229845d8248255dba3da760f789296247cf41acbb0491e2d9a56f3</originalsourceid><addsrcrecordid>eNotUF9LwzAcjILgnPsEvuQLdOb3S9Ikj6PMPzBRcD6PtElspG1q2wl-e6vu6eC4O-6OEApsDcDM7WOxKYonyQTwNTJka4PAWc7PyBUo1GCUlvk5WWAuMFNcikuyGscPxhgHbbThC1K_DKlPo3f01Te-mmLq6N5XdRc_j56mQLdfqTn-0nb4ppvmPQ1xqltqO0fjNNLY9o1vfTfZP2tIAy1SW8bOTrPSNnTOL2fFeE0ugm1GvzrhkrzdbffFQ7Z7vp937LIIoKdMmcpIG0A6gWi0kE6j0CilKy13VuUsKG3Q5ChUFQTYqiyZMODRGSvzwJfk5j83eu8P_RDbufjhdAz_AfpTWlI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Proposed Selection Technique of Evolutionary Algorithm and its implementation for Combinatorial Problems</title><source>IEEE Xplore All Conference Series</source><creator>Kumar, Rajiv ; Memoria, Minakshi</creator><creatorcontrib>Kumar, Rajiv ; Memoria, Minakshi</creatorcontrib><description>The present paper proposed new selection techniques of the evolutionary algorithm. The nature of the evolutionary algorithm is probabilistic and randomized. Evolutionary algorithm work on Charles Darwin's principle of natural selection. This algorithm can be applied to various optimization problems, such as scheduling, traveling salesman problems, Routing problems, or combinatorial problems. Evolutionary algorithms include Genetic algorithm, Memetic algorithm. The performance of the evolutionary algorithm depends upon its operators, such as selection techniques, crossover operators, mutation operator, and its parameter setting. The main focus of this paper is selection techniques. The proposed algorithm has been successfully implemented for the CPU scheduling problem. Experimental results show better results.</description><identifier>EISSN: 2642-7354</identifier><identifier>EISBN: 1728197856</identifier><identifier>EISBN: 9781728197852</identifier><identifier>DOI: 10.1109/ICACCM50413.2020.9213063</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological cells ; Combinatorial Problems ; Evolutionary algorithm ; Evolutionary computation ; Genetic algorithms ; NP-hard ; Processor scheduling ; Scheduling ; Sociology ; Statistics</subject><ispartof>2020 International Conference on Advances in Computing, Communication &amp; Materials (ICACCM), 2020, p.408-412</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9213063$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9213063$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kumar, Rajiv</creatorcontrib><creatorcontrib>Memoria, Minakshi</creatorcontrib><title>Proposed Selection Technique of Evolutionary Algorithm and its implementation for Combinatorial Problems</title><title>2020 International Conference on Advances in Computing, Communication &amp; Materials (ICACCM)</title><addtitle>ICACCM</addtitle><description>The present paper proposed new selection techniques of the evolutionary algorithm. The nature of the evolutionary algorithm is probabilistic and randomized. Evolutionary algorithm work on Charles Darwin's principle of natural selection. This algorithm can be applied to various optimization problems, such as scheduling, traveling salesman problems, Routing problems, or combinatorial problems. Evolutionary algorithms include Genetic algorithm, Memetic algorithm. The performance of the evolutionary algorithm depends upon its operators, such as selection techniques, crossover operators, mutation operator, and its parameter setting. The main focus of this paper is selection techniques. The proposed algorithm has been successfully implemented for the CPU scheduling problem. Experimental results show better results.</description><subject>Biological cells</subject><subject>Combinatorial Problems</subject><subject>Evolutionary algorithm</subject><subject>Evolutionary computation</subject><subject>Genetic algorithms</subject><subject>NP-hard</subject><subject>Processor scheduling</subject><subject>Scheduling</subject><subject>Sociology</subject><subject>Statistics</subject><issn>2642-7354</issn><isbn>1728197856</isbn><isbn>9781728197852</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotUF9LwzAcjILgnPsEvuQLdOb3S9Ikj6PMPzBRcD6PtElspG1q2wl-e6vu6eC4O-6OEApsDcDM7WOxKYonyQTwNTJka4PAWc7PyBUo1GCUlvk5WWAuMFNcikuyGscPxhgHbbThC1K_DKlPo3f01Te-mmLq6N5XdRc_j56mQLdfqTn-0nb4ppvmPQ1xqltqO0fjNNLY9o1vfTfZP2tIAy1SW8bOTrPSNnTOL2fFeE0ugm1GvzrhkrzdbffFQ7Z7vp937LIIoKdMmcpIG0A6gWi0kE6j0CilKy13VuUsKG3Q5ChUFQTYqiyZMODRGSvzwJfk5j83eu8P_RDbufjhdAz_AfpTWlI</recordid><startdate>20200821</startdate><enddate>20200821</enddate><creator>Kumar, Rajiv</creator><creator>Memoria, Minakshi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20200821</creationdate><title>Proposed Selection Technique of Evolutionary Algorithm and its implementation for Combinatorial Problems</title><author>Kumar, Rajiv ; Memoria, Minakshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-79c95af15d4229845d8248255dba3da760f789296247cf41acbb0491e2d9a56f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological cells</topic><topic>Combinatorial Problems</topic><topic>Evolutionary algorithm</topic><topic>Evolutionary computation</topic><topic>Genetic algorithms</topic><topic>NP-hard</topic><topic>Processor scheduling</topic><topic>Scheduling</topic><topic>Sociology</topic><topic>Statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Rajiv</creatorcontrib><creatorcontrib>Memoria, Minakshi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kumar, Rajiv</au><au>Memoria, Minakshi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Proposed Selection Technique of Evolutionary Algorithm and its implementation for Combinatorial Problems</atitle><btitle>2020 International Conference on Advances in Computing, Communication &amp; Materials (ICACCM)</btitle><stitle>ICACCM</stitle><date>2020-08-21</date><risdate>2020</risdate><spage>408</spage><epage>412</epage><pages>408-412</pages><eissn>2642-7354</eissn><eisbn>1728197856</eisbn><eisbn>9781728197852</eisbn><abstract>The present paper proposed new selection techniques of the evolutionary algorithm. The nature of the evolutionary algorithm is probabilistic and randomized. Evolutionary algorithm work on Charles Darwin's principle of natural selection. This algorithm can be applied to various optimization problems, such as scheduling, traveling salesman problems, Routing problems, or combinatorial problems. Evolutionary algorithms include Genetic algorithm, Memetic algorithm. The performance of the evolutionary algorithm depends upon its operators, such as selection techniques, crossover operators, mutation operator, and its parameter setting. The main focus of this paper is selection techniques. The proposed algorithm has been successfully implemented for the CPU scheduling problem. Experimental results show better results.</abstract><pub>IEEE</pub><doi>10.1109/ICACCM50413.2020.9213063</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2642-7354
ispartof 2020 International Conference on Advances in Computing, Communication & Materials (ICACCM), 2020, p.408-412
issn 2642-7354
language eng
recordid cdi_ieee_primary_9213063
source IEEE Xplore All Conference Series
subjects Biological cells
Combinatorial Problems
Evolutionary algorithm
Evolutionary computation
Genetic algorithms
NP-hard
Processor scheduling
Scheduling
Sociology
Statistics
title Proposed Selection Technique of Evolutionary Algorithm and its implementation for Combinatorial Problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A23%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Proposed%20Selection%20Technique%20of%20Evolutionary%20Algorithm%20and%20its%20implementation%20for%20Combinatorial%20Problems&rft.btitle=2020%20International%20Conference%20on%20Advances%20in%20Computing,%20Communication%20&%20Materials%20(ICACCM)&rft.au=Kumar,%20Rajiv&rft.date=2020-08-21&rft.spage=408&rft.epage=412&rft.pages=408-412&rft.eissn=2642-7354&rft_id=info:doi/10.1109/ICACCM50413.2020.9213063&rft.eisbn=1728197856&rft.eisbn_list=9781728197852&rft_dat=%3Cieee_CHZPO%3E9213063%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-79c95af15d4229845d8248255dba3da760f789296247cf41acbb0491e2d9a56f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9213063&rfr_iscdi=true