Loading…
Exponential H∞ State Estimation for Memristive Neural Networks: Vector Optimization Approach
This article presents the theoretical results on the H_\infty state estimation problem for a class of discrete-time memristive neural networks. By utilizing a Lyapunov-Krasovskii functional, sufficient conditions are derived to guarantee that the error system is exponentially mean-square stable; s...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2021-11, Vol.32 (11), p.5061-5071 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c243t-26d71450de5dcbe60e1617a9256587ec89d22e5e07c20aa9b8406c3f899ac3943 |
---|---|
cites | cdi_FETCH-LOGICAL-c243t-26d71450de5dcbe60e1617a9256587ec89d22e5e07c20aa9b8406c3f899ac3943 |
container_end_page | 5071 |
container_issue | 11 |
container_start_page | 5061 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 32 |
creator | Li, Ruoxia Cao, Jinde |
description | This article presents the theoretical results on the H_\infty state estimation problem for a class of discrete-time memristive neural networks. By utilizing a Lyapunov-Krasovskii functional, sufficient conditions are derived to guarantee that the error system is exponentially mean-square stable; subsequently, the prespecified H_\infty disturbance rejection attenuation level is also guaranteed. It should be noted that the vector optimization method is employed to find the maximum bound of function and the minimum disturbance turning simultaneously. Finally, the corresponding simulation results are included to show the effectiveness of the proposed methodology. |
doi_str_mv | 10.1109/TNNLS.2020.3026707 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9215009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9215009</ieee_id><sourcerecordid>2449177240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-26d71450de5dcbe60e1617a9256587ec89d22e5e07c20aa9b8406c3f899ac3943</originalsourceid><addsrcrecordid>eNpdkc9OGzEQh60KVFDgBehlJS5cEsaz_rPuDaHQIIVwAKqesIwzUTdNdhfbgbZPwFPwcDwJhqAcmItH1vd5Rv4xdsBhwDmY4-vJZHw1QEAYlIBKg_7CdpEr7GNZVVubXv_aYfsxziGXAqmE-cp2yqxwI8wuux3-7dqGmlS7RTF6eXourpJLVAxjqpcu1W1TzNpQXNAy1PnqgYoJrUJmJ5Qe2_Anfi9-kk8ZueyyUf9fOyddF1rnf--x7ZlbRNr_OHvs5mx4fTrqjy9_nJ-ejPseRZn6qKaaCwlTklN_RwqIK66dQalkpclXZopIkkB7BOfMXSVA-XJWGeN8aUTZY0frd_PY-xXFZJd19LRYuIbaVbQohOFao4CMHn5C5-0qNHk7i7JS0oCSMlO4pnxoYww0s13IHxL-WQ72LQD7HoB9C8B-BJClb2upJqKNYJBLAFO-AgIngGM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586590655</pqid></control><display><type>article</type><title>Exponential H∞ State Estimation for Memristive Neural Networks: Vector Optimization Approach</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Li, Ruoxia ; Cao, Jinde</creator><creatorcontrib>Li, Ruoxia ; Cao, Jinde</creatorcontrib><description><![CDATA[This article presents the theoretical results on the <inline-formula> <tex-math notation="LaTeX">H_\infty </tex-math></inline-formula> state estimation problem for a class of discrete-time memristive neural networks. By utilizing a Lyapunov-Krasovskii functional, sufficient conditions are derived to guarantee that the error system is exponentially mean-square stable; subsequently, the prespecified <inline-formula> <tex-math notation="LaTeX">H_\infty </tex-math></inline-formula> disturbance rejection attenuation level is also guaranteed. It should be noted that the vector optimization method is employed to find the maximum bound of function and the minimum disturbance turning simultaneously. Finally, the corresponding simulation results are included to show the effectiveness of the proposed methodology.]]></description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2020.3026707</identifier><identifier>PMID: 33021949</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Attenuation ; Discrete-time ; Discrete-time systems ; Disturbance ; exponential mean-square stability ; Neural networks ; Optimization ; State estimation ; vector optimization</subject><ispartof>IEEE transaction on neural networks and learning systems, 2021-11, Vol.32 (11), p.5061-5071</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-26d71450de5dcbe60e1617a9256587ec89d22e5e07c20aa9b8406c3f899ac3943</citedby><cites>FETCH-LOGICAL-c243t-26d71450de5dcbe60e1617a9256587ec89d22e5e07c20aa9b8406c3f899ac3943</cites><orcidid>0000-0002-4817-9906 ; 0000-0003-3133-7119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9215009$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Li, Ruoxia</creatorcontrib><creatorcontrib>Cao, Jinde</creatorcontrib><title>Exponential H∞ State Estimation for Memristive Neural Networks: Vector Optimization Approach</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><description><![CDATA[This article presents the theoretical results on the <inline-formula> <tex-math notation="LaTeX">H_\infty </tex-math></inline-formula> state estimation problem for a class of discrete-time memristive neural networks. By utilizing a Lyapunov-Krasovskii functional, sufficient conditions are derived to guarantee that the error system is exponentially mean-square stable; subsequently, the prespecified <inline-formula> <tex-math notation="LaTeX">H_\infty </tex-math></inline-formula> disturbance rejection attenuation level is also guaranteed. It should be noted that the vector optimization method is employed to find the maximum bound of function and the minimum disturbance turning simultaneously. Finally, the corresponding simulation results are included to show the effectiveness of the proposed methodology.]]></description><subject>Attenuation</subject><subject>Discrete-time</subject><subject>Discrete-time systems</subject><subject>Disturbance</subject><subject>exponential mean-square stability</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>State estimation</subject><subject>vector optimization</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkc9OGzEQh60KVFDgBehlJS5cEsaz_rPuDaHQIIVwAKqesIwzUTdNdhfbgbZPwFPwcDwJhqAcmItH1vd5Rv4xdsBhwDmY4-vJZHw1QEAYlIBKg_7CdpEr7GNZVVubXv_aYfsxziGXAqmE-cp2yqxwI8wuux3-7dqGmlS7RTF6eXourpJLVAxjqpcu1W1TzNpQXNAy1PnqgYoJrUJmJ5Qe2_Anfi9-kk8ZueyyUf9fOyddF1rnf--x7ZlbRNr_OHvs5mx4fTrqjy9_nJ-ejPseRZn6qKaaCwlTklN_RwqIK66dQalkpclXZopIkkB7BOfMXSVA-XJWGeN8aUTZY0frd_PY-xXFZJd19LRYuIbaVbQohOFao4CMHn5C5-0qNHk7i7JS0oCSMlO4pnxoYww0s13IHxL-WQ72LQD7HoB9C8B-BJClb2upJqKNYJBLAFO-AgIngGM</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Li, Ruoxia</creator><creator>Cao, Jinde</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4817-9906</orcidid><orcidid>https://orcid.org/0000-0003-3133-7119</orcidid></search><sort><creationdate>20211101</creationdate><title>Exponential H∞ State Estimation for Memristive Neural Networks: Vector Optimization Approach</title><author>Li, Ruoxia ; Cao, Jinde</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-26d71450de5dcbe60e1617a9256587ec89d22e5e07c20aa9b8406c3f899ac3943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Attenuation</topic><topic>Discrete-time</topic><topic>Discrete-time systems</topic><topic>Disturbance</topic><topic>exponential mean-square stability</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>State estimation</topic><topic>vector optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Ruoxia</creatorcontrib><creatorcontrib>Cao, Jinde</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ruoxia</au><au>Cao, Jinde</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential H∞ State Estimation for Memristive Neural Networks: Vector Optimization Approach</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>32</volume><issue>11</issue><spage>5061</spage><epage>5071</epage><pages>5061-5071</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract><![CDATA[This article presents the theoretical results on the <inline-formula> <tex-math notation="LaTeX">H_\infty </tex-math></inline-formula> state estimation problem for a class of discrete-time memristive neural networks. By utilizing a Lyapunov-Krasovskii functional, sufficient conditions are derived to guarantee that the error system is exponentially mean-square stable; subsequently, the prespecified <inline-formula> <tex-math notation="LaTeX">H_\infty </tex-math></inline-formula> disturbance rejection attenuation level is also guaranteed. It should be noted that the vector optimization method is employed to find the maximum bound of function and the minimum disturbance turning simultaneously. Finally, the corresponding simulation results are included to show the effectiveness of the proposed methodology.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><pmid>33021949</pmid><doi>10.1109/TNNLS.2020.3026707</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4817-9906</orcidid><orcidid>https://orcid.org/0000-0003-3133-7119</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2021-11, Vol.32 (11), p.5061-5071 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_ieee_primary_9215009 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Attenuation Discrete-time Discrete-time systems Disturbance exponential mean-square stability Neural networks Optimization State estimation vector optimization |
title | Exponential H∞ State Estimation for Memristive Neural Networks: Vector Optimization Approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A23%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20H%E2%88%9E%20State%20Estimation%20for%20Memristive%20Neural%20Networks:%20Vector%20Optimization%20Approach&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Li,%20Ruoxia&rft.date=2021-11-01&rft.volume=32&rft.issue=11&rft.spage=5061&rft.epage=5071&rft.pages=5061-5071&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2020.3026707&rft_dat=%3Cproquest_ieee_%3E2449177240%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c243t-26d71450de5dcbe60e1617a9256587ec89d22e5e07c20aa9b8406c3f899ac3943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2586590655&rft_id=info:pmid/33021949&rft_ieee_id=9215009&rfr_iscdi=true |