Loading…

Exponential H∞ State Estimation for Memristive Neural Networks: Vector Optimization Approach

This article presents the theoretical results on the H_\infty state estimation problem for a class of discrete-time memristive neural networks. By utilizing a Lyapunov-Krasovskii functional, sufficient conditions are derived to guarantee that the error system is exponentially mean-square stable; s...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems 2021-11, Vol.32 (11), p.5061-5071
Main Authors: Li, Ruoxia, Cao, Jinde
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c243t-26d71450de5dcbe60e1617a9256587ec89d22e5e07c20aa9b8406c3f899ac3943
cites cdi_FETCH-LOGICAL-c243t-26d71450de5dcbe60e1617a9256587ec89d22e5e07c20aa9b8406c3f899ac3943
container_end_page 5071
container_issue 11
container_start_page 5061
container_title IEEE transaction on neural networks and learning systems
container_volume 32
creator Li, Ruoxia
Cao, Jinde
description This article presents the theoretical results on the H_\infty state estimation problem for a class of discrete-time memristive neural networks. By utilizing a Lyapunov-Krasovskii functional, sufficient conditions are derived to guarantee that the error system is exponentially mean-square stable; subsequently, the prespecified H_\infty disturbance rejection attenuation level is also guaranteed. It should be noted that the vector optimization method is employed to find the maximum bound of function and the minimum disturbance turning simultaneously. Finally, the corresponding simulation results are included to show the effectiveness of the proposed methodology.
doi_str_mv 10.1109/TNNLS.2020.3026707
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9215009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9215009</ieee_id><sourcerecordid>2449177240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-26d71450de5dcbe60e1617a9256587ec89d22e5e07c20aa9b8406c3f899ac3943</originalsourceid><addsrcrecordid>eNpdkc9OGzEQh60KVFDgBehlJS5cEsaz_rPuDaHQIIVwAKqesIwzUTdNdhfbgbZPwFPwcDwJhqAcmItH1vd5Rv4xdsBhwDmY4-vJZHw1QEAYlIBKg_7CdpEr7GNZVVubXv_aYfsxziGXAqmE-cp2yqxwI8wuux3-7dqGmlS7RTF6eXourpJLVAxjqpcu1W1TzNpQXNAy1PnqgYoJrUJmJ5Qe2_Anfi9-kk8ZueyyUf9fOyddF1rnf--x7ZlbRNr_OHvs5mx4fTrqjy9_nJ-ejPseRZn6qKaaCwlTklN_RwqIK66dQalkpclXZopIkkB7BOfMXSVA-XJWGeN8aUTZY0frd_PY-xXFZJd19LRYuIbaVbQohOFao4CMHn5C5-0qNHk7i7JS0oCSMlO4pnxoYww0s13IHxL-WQ72LQD7HoB9C8B-BJClb2upJqKNYJBLAFO-AgIngGM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586590655</pqid></control><display><type>article</type><title>Exponential H∞ State Estimation for Memristive Neural Networks: Vector Optimization Approach</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Li, Ruoxia ; Cao, Jinde</creator><creatorcontrib>Li, Ruoxia ; Cao, Jinde</creatorcontrib><description><![CDATA[This article presents the theoretical results on the <inline-formula> <tex-math notation="LaTeX">H_\infty </tex-math></inline-formula> state estimation problem for a class of discrete-time memristive neural networks. By utilizing a Lyapunov-Krasovskii functional, sufficient conditions are derived to guarantee that the error system is exponentially mean-square stable; subsequently, the prespecified <inline-formula> <tex-math notation="LaTeX">H_\infty </tex-math></inline-formula> disturbance rejection attenuation level is also guaranteed. It should be noted that the vector optimization method is employed to find the maximum bound of function and the minimum disturbance turning simultaneously. Finally, the corresponding simulation results are included to show the effectiveness of the proposed methodology.]]></description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2020.3026707</identifier><identifier>PMID: 33021949</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Attenuation ; Discrete-time ; Discrete-time systems ; Disturbance ; exponential mean-square stability ; Neural networks ; Optimization ; State estimation ; vector optimization</subject><ispartof>IEEE transaction on neural networks and learning systems, 2021-11, Vol.32 (11), p.5061-5071</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-26d71450de5dcbe60e1617a9256587ec89d22e5e07c20aa9b8406c3f899ac3943</citedby><cites>FETCH-LOGICAL-c243t-26d71450de5dcbe60e1617a9256587ec89d22e5e07c20aa9b8406c3f899ac3943</cites><orcidid>0000-0002-4817-9906 ; 0000-0003-3133-7119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9215009$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Li, Ruoxia</creatorcontrib><creatorcontrib>Cao, Jinde</creatorcontrib><title>Exponential H∞ State Estimation for Memristive Neural Networks: Vector Optimization Approach</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><description><![CDATA[This article presents the theoretical results on the <inline-formula> <tex-math notation="LaTeX">H_\infty </tex-math></inline-formula> state estimation problem for a class of discrete-time memristive neural networks. By utilizing a Lyapunov-Krasovskii functional, sufficient conditions are derived to guarantee that the error system is exponentially mean-square stable; subsequently, the prespecified <inline-formula> <tex-math notation="LaTeX">H_\infty </tex-math></inline-formula> disturbance rejection attenuation level is also guaranteed. It should be noted that the vector optimization method is employed to find the maximum bound of function and the minimum disturbance turning simultaneously. Finally, the corresponding simulation results are included to show the effectiveness of the proposed methodology.]]></description><subject>Attenuation</subject><subject>Discrete-time</subject><subject>Discrete-time systems</subject><subject>Disturbance</subject><subject>exponential mean-square stability</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>State estimation</subject><subject>vector optimization</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkc9OGzEQh60KVFDgBehlJS5cEsaz_rPuDaHQIIVwAKqesIwzUTdNdhfbgbZPwFPwcDwJhqAcmItH1vd5Rv4xdsBhwDmY4-vJZHw1QEAYlIBKg_7CdpEr7GNZVVubXv_aYfsxziGXAqmE-cp2yqxwI8wuux3-7dqGmlS7RTF6eXourpJLVAxjqpcu1W1TzNpQXNAy1PnqgYoJrUJmJ5Qe2_Anfi9-kk8ZueyyUf9fOyddF1rnf--x7ZlbRNr_OHvs5mx4fTrqjy9_nJ-ejPseRZn6qKaaCwlTklN_RwqIK66dQalkpclXZopIkkB7BOfMXSVA-XJWGeN8aUTZY0frd_PY-xXFZJd19LRYuIbaVbQohOFao4CMHn5C5-0qNHk7i7JS0oCSMlO4pnxoYww0s13IHxL-WQ72LQD7HoB9C8B-BJClb2upJqKNYJBLAFO-AgIngGM</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Li, Ruoxia</creator><creator>Cao, Jinde</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4817-9906</orcidid><orcidid>https://orcid.org/0000-0003-3133-7119</orcidid></search><sort><creationdate>20211101</creationdate><title>Exponential H∞ State Estimation for Memristive Neural Networks: Vector Optimization Approach</title><author>Li, Ruoxia ; Cao, Jinde</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-26d71450de5dcbe60e1617a9256587ec89d22e5e07c20aa9b8406c3f899ac3943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Attenuation</topic><topic>Discrete-time</topic><topic>Discrete-time systems</topic><topic>Disturbance</topic><topic>exponential mean-square stability</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>State estimation</topic><topic>vector optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Ruoxia</creatorcontrib><creatorcontrib>Cao, Jinde</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ruoxia</au><au>Cao, Jinde</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential H∞ State Estimation for Memristive Neural Networks: Vector Optimization Approach</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>32</volume><issue>11</issue><spage>5061</spage><epage>5071</epage><pages>5061-5071</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract><![CDATA[This article presents the theoretical results on the <inline-formula> <tex-math notation="LaTeX">H_\infty </tex-math></inline-formula> state estimation problem for a class of discrete-time memristive neural networks. By utilizing a Lyapunov-Krasovskii functional, sufficient conditions are derived to guarantee that the error system is exponentially mean-square stable; subsequently, the prespecified <inline-formula> <tex-math notation="LaTeX">H_\infty </tex-math></inline-formula> disturbance rejection attenuation level is also guaranteed. It should be noted that the vector optimization method is employed to find the maximum bound of function and the minimum disturbance turning simultaneously. Finally, the corresponding simulation results are included to show the effectiveness of the proposed methodology.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><pmid>33021949</pmid><doi>10.1109/TNNLS.2020.3026707</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4817-9906</orcidid><orcidid>https://orcid.org/0000-0003-3133-7119</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2021-11, Vol.32 (11), p.5061-5071
issn 2162-237X
2162-2388
language eng
recordid cdi_ieee_primary_9215009
source IEEE Electronic Library (IEL) Journals
subjects Attenuation
Discrete-time
Discrete-time systems
Disturbance
exponential mean-square stability
Neural networks
Optimization
State estimation
vector optimization
title Exponential H∞ State Estimation for Memristive Neural Networks: Vector Optimization Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A23%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20H%E2%88%9E%20State%20Estimation%20for%20Memristive%20Neural%20Networks:%20Vector%20Optimization%20Approach&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Li,%20Ruoxia&rft.date=2021-11-01&rft.volume=32&rft.issue=11&rft.spage=5061&rft.epage=5071&rft.pages=5061-5071&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2020.3026707&rft_dat=%3Cproquest_ieee_%3E2449177240%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c243t-26d71450de5dcbe60e1617a9256587ec89d22e5e07c20aa9b8406c3f899ac3943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2586590655&rft_id=info:pmid/33021949&rft_ieee_id=9215009&rfr_iscdi=true