Loading…
A Robust Adaptive Estimation Algorithm for Hamiltonian Multi-Agent Networks
In this letter a robust incremental adaptation algorithm is presented to solve distributed estimation for a Hamiltonian network, where the measurements at each node may be corrupted by heavy-tailed impulsive noise. In the proposed algorithm, each node employs an error-nonlinearity into the update eq...
Saved in:
Published in: | IEEE control systems letters 2021-10, Vol.5 (4), p.1243-1248 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this letter a robust incremental adaptation algorithm is presented to solve distributed estimation for a Hamiltonian network, where the measurements at each node may be corrupted by heavy-tailed impulsive noise. In the proposed algorithm, each node employs an error-nonlinearity into the update equation to mitigate the detrimental effects of impulsive noise. Moreover, the algorithm estimates both the optimal error non-linearity and the unknown parameter together, which in turn, obviates the requirement of prior knowledge about the statistical characteristics of measurement noise. In addition to algorithm development, its steady-state performance as well as convergence analysis have been provided. Simulation results validate the correctness of the analysis and reveal the superiority of the proposed algorithm over some existing algorithms. |
---|---|
ISSN: | 2475-1456 2475-1456 |
DOI: | 10.1109/LCSYS.2020.3029332 |