Loading…
Low complexity Near-ML Sphere Decoding based on a MMSE ordering for Generalized Spatial Modulation
Generalized Spatial Modulation (GSM) is a trans-mission technique used in wireless communications in which only part of the transmitter antennas are activated during each time signaling period. A low complexity Sphere Decoding (SD) algorithm to achieve maximum likelihood (ML) detection has recently...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Generalized Spatial Modulation (GSM) is a trans-mission technique used in wireless communications in which only part of the transmitter antennas are activated during each time signaling period. A low complexity Sphere Decoding (SD) algorithm to achieve maximum likelihood (ML) detection has recently been proposed by using subproblem partitions, sorting preprocessing and radius updating. However, the ordering method has a serious limitation when the number of activated antennas is equal to the number of received antennas. Therefore, alternative sorting methods are studied in the present paper. In addition, the computational cost of the ML algorithm can be high when the system sizes increases. In this paper a suboptimal version is proposed where only the first L SD subproblems are carried out. The results show that the proposed algorithm achieves near optimal performance at lower computational cost than ML algorithms. |
---|---|
ISSN: | 2166-9589 |
DOI: | 10.1109/PIMRC48278.2020.9217259 |