Loading…
Fast and Robust Underwater Obstacle Detection in Acoustic Vision
Sonar is a vital instrument for underwater detection. BlueView(BV) as an acoustic vision sensor is subject to structural noise during detection. This phenomenon has a negative impact on the detection and image restoration of sonar. In this paper, we propose an improved Bayes estimation method for ac...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Liu, Hengrui Chen, Deshan Zhang, Di Zhou, Peng |
description | Sonar is a vital instrument for underwater detection. BlueView(BV) as an acoustic vision sensor is subject to structural noise during detection. This phenomenon has a negative impact on the detection and image restoration of sonar. In this paper, we propose an improved Bayes estimation method for acoustic vision object detection in the BV forward looking sonar images. The method is based on Gaussian mixture model and to represent background prior probability model for each pixel. The conditional probability model construction via an improved sigmoid model. As verified experimentally, the proposed method shows a fast yet robust result. |
doi_str_mv | 10.1109/ICSSE50014.2020.9219258 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9219258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9219258</ieee_id><sourcerecordid>9219258</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-e11387d874ecea4d81b230909c38b2d02e491495a134285113f353217b58902d3</originalsourceid><addsrcrecordid>eNotT8FKAzEUjIJgqfsFHswP7PreS2KSm2VttVAoWOu1ZDevEKm7shsR_94Fe5phZhhmhLhDqBDB36_r3W5pAFBXBASVJ_Rk3IUovHVoyaHxD2AvxYwUmRIm81oU4_gBAIoQrbcz8bgKY5ahi_K1b74nuu8iDz8h8yC3zZhDe2L5xJnbnPpOpk4u2n7KpVa-p3GSbsTVMZxGLs44F_vV8q1-KTfb53W92JQJ0eWSEZWz0VnNLQcdHTakwINvlWsoArH2qL0JqDQ5M6WPykwrbWOcB4pqLm7_exMzH76G9BmG38P5s_oDYARJkQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fast and Robust Underwater Obstacle Detection in Acoustic Vision</title><source>IEEE Xplore All Conference Series</source><creator>Liu, Hengrui ; Chen, Deshan ; Zhang, Di ; Zhou, Peng</creator><creatorcontrib>Liu, Hengrui ; Chen, Deshan ; Zhang, Di ; Zhou, Peng</creatorcontrib><description>Sonar is a vital instrument for underwater detection. BlueView(BV) as an acoustic vision sensor is subject to structural noise during detection. This phenomenon has a negative impact on the detection and image restoration of sonar. In this paper, we propose an improved Bayes estimation method for acoustic vision object detection in the BV forward looking sonar images. The method is based on Gaussian mixture model and to represent background prior probability model for each pixel. The conditional probability model construction via an improved sigmoid model. As verified experimentally, the proposed method shows a fast yet robust result.</description><identifier>EISSN: 2325-0925</identifier><identifier>EISBN: 9781728159607</identifier><identifier>EISBN: 1728159601</identifier><identifier>DOI: 10.1109/ICSSE50014.2020.9219258</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustics ; Estimation ; Image edge detection ; information fusion ; Instruments ; Object detection ; robust detection ; Sonar ; structural noise ; underwater obstacles ; Vision sensors</subject><ispartof>2020 International Conference on System Science and Engineering (ICSSE), 2020, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9219258$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9219258$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Hengrui</creatorcontrib><creatorcontrib>Chen, Deshan</creatorcontrib><creatorcontrib>Zhang, Di</creatorcontrib><creatorcontrib>Zhou, Peng</creatorcontrib><title>Fast and Robust Underwater Obstacle Detection in Acoustic Vision</title><title>2020 International Conference on System Science and Engineering (ICSSE)</title><addtitle>ICSSE</addtitle><description>Sonar is a vital instrument for underwater detection. BlueView(BV) as an acoustic vision sensor is subject to structural noise during detection. This phenomenon has a negative impact on the detection and image restoration of sonar. In this paper, we propose an improved Bayes estimation method for acoustic vision object detection in the BV forward looking sonar images. The method is based on Gaussian mixture model and to represent background prior probability model for each pixel. The conditional probability model construction via an improved sigmoid model. As verified experimentally, the proposed method shows a fast yet robust result.</description><subject>Acoustics</subject><subject>Estimation</subject><subject>Image edge detection</subject><subject>information fusion</subject><subject>Instruments</subject><subject>Object detection</subject><subject>robust detection</subject><subject>Sonar</subject><subject>structural noise</subject><subject>underwater obstacles</subject><subject>Vision sensors</subject><issn>2325-0925</issn><isbn>9781728159607</isbn><isbn>1728159601</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotT8FKAzEUjIJgqfsFHswP7PreS2KSm2VttVAoWOu1ZDevEKm7shsR_94Fe5phZhhmhLhDqBDB36_r3W5pAFBXBASVJ_Rk3IUovHVoyaHxD2AvxYwUmRIm81oU4_gBAIoQrbcz8bgKY5ahi_K1b74nuu8iDz8h8yC3zZhDe2L5xJnbnPpOpk4u2n7KpVa-p3GSbsTVMZxGLs44F_vV8q1-KTfb53W92JQJ0eWSEZWz0VnNLQcdHTakwINvlWsoArH2qL0JqDQ5M6WPykwrbWOcB4pqLm7_exMzH76G9BmG38P5s_oDYARJkQ</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Liu, Hengrui</creator><creator>Chen, Deshan</creator><creator>Zhang, Di</creator><creator>Zhou, Peng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202008</creationdate><title>Fast and Robust Underwater Obstacle Detection in Acoustic Vision</title><author>Liu, Hengrui ; Chen, Deshan ; Zhang, Di ; Zhou, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-e11387d874ecea4d81b230909c38b2d02e491495a134285113f353217b58902d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustics</topic><topic>Estimation</topic><topic>Image edge detection</topic><topic>information fusion</topic><topic>Instruments</topic><topic>Object detection</topic><topic>robust detection</topic><topic>Sonar</topic><topic>structural noise</topic><topic>underwater obstacles</topic><topic>Vision sensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Hengrui</creatorcontrib><creatorcontrib>Chen, Deshan</creatorcontrib><creatorcontrib>Zhang, Di</creatorcontrib><creatorcontrib>Zhou, Peng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Hengrui</au><au>Chen, Deshan</au><au>Zhang, Di</au><au>Zhou, Peng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fast and Robust Underwater Obstacle Detection in Acoustic Vision</atitle><btitle>2020 International Conference on System Science and Engineering (ICSSE)</btitle><stitle>ICSSE</stitle><date>2020-08</date><risdate>2020</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2325-0925</eissn><eisbn>9781728159607</eisbn><eisbn>1728159601</eisbn><abstract>Sonar is a vital instrument for underwater detection. BlueView(BV) as an acoustic vision sensor is subject to structural noise during detection. This phenomenon has a negative impact on the detection and image restoration of sonar. In this paper, we propose an improved Bayes estimation method for acoustic vision object detection in the BV forward looking sonar images. The method is based on Gaussian mixture model and to represent background prior probability model for each pixel. The conditional probability model construction via an improved sigmoid model. As verified experimentally, the proposed method shows a fast yet robust result.</abstract><pub>IEEE</pub><doi>10.1109/ICSSE50014.2020.9219258</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2325-0925 |
ispartof | 2020 International Conference on System Science and Engineering (ICSSE), 2020, p.1-6 |
issn | 2325-0925 |
language | eng |
recordid | cdi_ieee_primary_9219258 |
source | IEEE Xplore All Conference Series |
subjects | Acoustics Estimation Image edge detection information fusion Instruments Object detection robust detection Sonar structural noise underwater obstacles Vision sensors |
title | Fast and Robust Underwater Obstacle Detection in Acoustic Vision |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A14%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fast%20and%20Robust%20Underwater%20Obstacle%20Detection%20in%20Acoustic%20Vision&rft.btitle=2020%20International%20Conference%20on%20System%20Science%20and%20Engineering%20(ICSSE)&rft.au=Liu,%20Hengrui&rft.date=2020-08&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2325-0925&rft_id=info:doi/10.1109/ICSSE50014.2020.9219258&rft.eisbn=9781728159607&rft.eisbn_list=1728159601&rft_dat=%3Cieee_CHZPO%3E9219258%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-e11387d874ecea4d81b230909c38b2d02e491495a134285113f353217b58902d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9219258&rfr_iscdi=true |