Loading…
A Novel Method for the Synthetic Generation of Non-I.I.D Workloads for Cloud Data Centers
Cloud data center workloads have time- dependencies and are hence non-i.i.d (independent and identically distributed). In this paper, we propose a new model-based method for creating synthetic workload traces for cloud data centers that have similar time characteristics and cumulative distributions...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Koltuk, Furkan Schmidt, Ece Guran |
description | Cloud data center workloads have time- dependencies and are hence non-i.i.d (independent and identically distributed). In this paper, we propose a new model-based method for creating synthetic workload traces for cloud data centers that have similar time characteristics and cumulative distributions to those of the actual traces. We evaluate our method using the actual resource request traces of Azure collected in 2019 and the well-known Google cloud trace. Our method enables generating synthetic traces that can be used for a more realistic evaluation of cloud data centers. |
doi_str_mv | 10.1109/ISCC50000.2020.9219577 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9219577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9219577</ieee_id><sourcerecordid>9219577</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-1811fc06ee557fd85d0123d3b15cacd7f088aae5522b9b995967d99e131556f3</originalsourceid><addsrcrecordid>eNotkM1KAzEUhaMgWGufQJC8wIy5iZkky5JqHai6aEFclXRyQ0fHiWSi0LfvoD2bb3F-FoeQW2AlADN39dpayUaVnHFWGg5GKnVGZkZpUFyDZrqCczLh1T0vlNDmklwNw8fY0JKrCXmf05f4ix19xryPnoaYaN4jXR_6Eblt6BJ7TC63sacxjOG-qMu6XNC3mD676Pzw17Fd_PF04bKjFvuMabgmF8F1A85OnJLN48PGPhWr12Vt56uiBdC5AA0QGlYhSqmC19Iz4MKLHcjGNV4FprVzo8n5zuyMkaZS3hgEAVJWQUzJzf9si4jb79R-uXTYno4QRzttUUo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Novel Method for the Synthetic Generation of Non-I.I.D Workloads for Cloud Data Centers</title><source>IEEE Xplore All Conference Series</source><creator>Koltuk, Furkan ; Schmidt, Ece Guran</creator><creatorcontrib>Koltuk, Furkan ; Schmidt, Ece Guran</creatorcontrib><description>Cloud data center workloads have time- dependencies and are hence non-i.i.d (independent and identically distributed). In this paper, we propose a new model-based method for creating synthetic workload traces for cloud data centers that have similar time characteristics and cumulative distributions to those of the actual traces. We evaluate our method using the actual resource request traces of Azure collected in 2019 and the well-known Google cloud trace. Our method enables generating synthetic traces that can be used for a more realistic evaluation of cloud data centers.</description><identifier>EISSN: 2642-7389</identifier><identifier>EISBN: 9781728180861</identifier><identifier>EISBN: 1728180864</identifier><identifier>DOI: 10.1109/ISCC50000.2020.9219577</identifier><language>eng</language><publisher>IEEE</publisher><subject>cloud computing ; Computers ; Data centers ; Data models ; distribution fitting ; Fitting ; Internet ; model-based workload generation</subject><ispartof>2020 IEEE Symposium on Computers and Communications (ISCC), 2020, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9219577$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9219577$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Koltuk, Furkan</creatorcontrib><creatorcontrib>Schmidt, Ece Guran</creatorcontrib><title>A Novel Method for the Synthetic Generation of Non-I.I.D Workloads for Cloud Data Centers</title><title>2020 IEEE Symposium on Computers and Communications (ISCC)</title><addtitle>ISCC</addtitle><description>Cloud data center workloads have time- dependencies and are hence non-i.i.d (independent and identically distributed). In this paper, we propose a new model-based method for creating synthetic workload traces for cloud data centers that have similar time characteristics and cumulative distributions to those of the actual traces. We evaluate our method using the actual resource request traces of Azure collected in 2019 and the well-known Google cloud trace. Our method enables generating synthetic traces that can be used for a more realistic evaluation of cloud data centers.</description><subject>cloud computing</subject><subject>Computers</subject><subject>Data centers</subject><subject>Data models</subject><subject>distribution fitting</subject><subject>Fitting</subject><subject>Internet</subject><subject>model-based workload generation</subject><issn>2642-7389</issn><isbn>9781728180861</isbn><isbn>1728180864</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1KAzEUhaMgWGufQJC8wIy5iZkky5JqHai6aEFclXRyQ0fHiWSi0LfvoD2bb3F-FoeQW2AlADN39dpayUaVnHFWGg5GKnVGZkZpUFyDZrqCczLh1T0vlNDmklwNw8fY0JKrCXmf05f4ix19xryPnoaYaN4jXR_6Eblt6BJ7TC63sacxjOG-qMu6XNC3mD676Pzw17Fd_PF04bKjFvuMabgmF8F1A85OnJLN48PGPhWr12Vt56uiBdC5AA0QGlYhSqmC19Iz4MKLHcjGNV4FprVzo8n5zuyMkaZS3hgEAVJWQUzJzf9si4jb79R-uXTYno4QRzttUUo</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Koltuk, Furkan</creator><creator>Schmidt, Ece Guran</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202007</creationdate><title>A Novel Method for the Synthetic Generation of Non-I.I.D Workloads for Cloud Data Centers</title><author>Koltuk, Furkan ; Schmidt, Ece Guran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-1811fc06ee557fd85d0123d3b15cacd7f088aae5522b9b995967d99e131556f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>cloud computing</topic><topic>Computers</topic><topic>Data centers</topic><topic>Data models</topic><topic>distribution fitting</topic><topic>Fitting</topic><topic>Internet</topic><topic>model-based workload generation</topic><toplevel>online_resources</toplevel><creatorcontrib>Koltuk, Furkan</creatorcontrib><creatorcontrib>Schmidt, Ece Guran</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Koltuk, Furkan</au><au>Schmidt, Ece Guran</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Novel Method for the Synthetic Generation of Non-I.I.D Workloads for Cloud Data Centers</atitle><btitle>2020 IEEE Symposium on Computers and Communications (ISCC)</btitle><stitle>ISCC</stitle><date>2020-07</date><risdate>2020</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2642-7389</eissn><eisbn>9781728180861</eisbn><eisbn>1728180864</eisbn><abstract>Cloud data center workloads have time- dependencies and are hence non-i.i.d (independent and identically distributed). In this paper, we propose a new model-based method for creating synthetic workload traces for cloud data centers that have similar time characteristics and cumulative distributions to those of the actual traces. We evaluate our method using the actual resource request traces of Azure collected in 2019 and the well-known Google cloud trace. Our method enables generating synthetic traces that can be used for a more realistic evaluation of cloud data centers.</abstract><pub>IEEE</pub><doi>10.1109/ISCC50000.2020.9219577</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2642-7389 |
ispartof | 2020 IEEE Symposium on Computers and Communications (ISCC), 2020, p.1-6 |
issn | 2642-7389 |
language | eng |
recordid | cdi_ieee_primary_9219577 |
source | IEEE Xplore All Conference Series |
subjects | cloud computing Computers Data centers Data models distribution fitting Fitting Internet model-based workload generation |
title | A Novel Method for the Synthetic Generation of Non-I.I.D Workloads for Cloud Data Centers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A23%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Novel%20Method%20for%20the%20Synthetic%20Generation%20of%20Non-I.I.D%20Workloads%20for%20Cloud%20Data%20Centers&rft.btitle=2020%20IEEE%20Symposium%20on%20Computers%20and%20Communications%20(ISCC)&rft.au=Koltuk,%20Furkan&rft.date=2020-07&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2642-7389&rft_id=info:doi/10.1109/ISCC50000.2020.9219577&rft.eisbn=9781728180861&rft.eisbn_list=1728180864&rft_dat=%3Cieee_CHZPO%3E9219577%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-1811fc06ee557fd85d0123d3b15cacd7f088aae5522b9b995967d99e131556f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9219577&rfr_iscdi=true |