Loading…

A Novel Method for the Synthetic Generation of Non-I.I.D Workloads for Cloud Data Centers

Cloud data center workloads have time- dependencies and are hence non-i.i.d (independent and identically distributed). In this paper, we propose a new model-based method for creating synthetic workload traces for cloud data centers that have similar time characteristics and cumulative distributions...

Full description

Saved in:
Bibliographic Details
Main Authors: Koltuk, Furkan, Schmidt, Ece Guran
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Koltuk, Furkan
Schmidt, Ece Guran
description Cloud data center workloads have time- dependencies and are hence non-i.i.d (independent and identically distributed). In this paper, we propose a new model-based method for creating synthetic workload traces for cloud data centers that have similar time characteristics and cumulative distributions to those of the actual traces. We evaluate our method using the actual resource request traces of Azure collected in 2019 and the well-known Google cloud trace. Our method enables generating synthetic traces that can be used for a more realistic evaluation of cloud data centers.
doi_str_mv 10.1109/ISCC50000.2020.9219577
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9219577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9219577</ieee_id><sourcerecordid>9219577</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-1811fc06ee557fd85d0123d3b15cacd7f088aae5522b9b995967d99e131556f3</originalsourceid><addsrcrecordid>eNotkM1KAzEUhaMgWGufQJC8wIy5iZkky5JqHai6aEFclXRyQ0fHiWSi0LfvoD2bb3F-FoeQW2AlADN39dpayUaVnHFWGg5GKnVGZkZpUFyDZrqCczLh1T0vlNDmklwNw8fY0JKrCXmf05f4ix19xryPnoaYaN4jXR_6Eblt6BJ7TC63sacxjOG-qMu6XNC3mD676Pzw17Fd_PF04bKjFvuMabgmF8F1A85OnJLN48PGPhWr12Vt56uiBdC5AA0QGlYhSqmC19Iz4MKLHcjGNV4FprVzo8n5zuyMkaZS3hgEAVJWQUzJzf9si4jb79R-uXTYno4QRzttUUo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Novel Method for the Synthetic Generation of Non-I.I.D Workloads for Cloud Data Centers</title><source>IEEE Xplore All Conference Series</source><creator>Koltuk, Furkan ; Schmidt, Ece Guran</creator><creatorcontrib>Koltuk, Furkan ; Schmidt, Ece Guran</creatorcontrib><description>Cloud data center workloads have time- dependencies and are hence non-i.i.d (independent and identically distributed). In this paper, we propose a new model-based method for creating synthetic workload traces for cloud data centers that have similar time characteristics and cumulative distributions to those of the actual traces. We evaluate our method using the actual resource request traces of Azure collected in 2019 and the well-known Google cloud trace. Our method enables generating synthetic traces that can be used for a more realistic evaluation of cloud data centers.</description><identifier>EISSN: 2642-7389</identifier><identifier>EISBN: 9781728180861</identifier><identifier>EISBN: 1728180864</identifier><identifier>DOI: 10.1109/ISCC50000.2020.9219577</identifier><language>eng</language><publisher>IEEE</publisher><subject>cloud computing ; Computers ; Data centers ; Data models ; distribution fitting ; Fitting ; Internet ; model-based workload generation</subject><ispartof>2020 IEEE Symposium on Computers and Communications (ISCC), 2020, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9219577$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9219577$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Koltuk, Furkan</creatorcontrib><creatorcontrib>Schmidt, Ece Guran</creatorcontrib><title>A Novel Method for the Synthetic Generation of Non-I.I.D Workloads for Cloud Data Centers</title><title>2020 IEEE Symposium on Computers and Communications (ISCC)</title><addtitle>ISCC</addtitle><description>Cloud data center workloads have time- dependencies and are hence non-i.i.d (independent and identically distributed). In this paper, we propose a new model-based method for creating synthetic workload traces for cloud data centers that have similar time characteristics and cumulative distributions to those of the actual traces. We evaluate our method using the actual resource request traces of Azure collected in 2019 and the well-known Google cloud trace. Our method enables generating synthetic traces that can be used for a more realistic evaluation of cloud data centers.</description><subject>cloud computing</subject><subject>Computers</subject><subject>Data centers</subject><subject>Data models</subject><subject>distribution fitting</subject><subject>Fitting</subject><subject>Internet</subject><subject>model-based workload generation</subject><issn>2642-7389</issn><isbn>9781728180861</isbn><isbn>1728180864</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1KAzEUhaMgWGufQJC8wIy5iZkky5JqHai6aEFclXRyQ0fHiWSi0LfvoD2bb3F-FoeQW2AlADN39dpayUaVnHFWGg5GKnVGZkZpUFyDZrqCczLh1T0vlNDmklwNw8fY0JKrCXmf05f4ix19xryPnoaYaN4jXR_6Eblt6BJ7TC63sacxjOG-qMu6XNC3mD676Pzw17Fd_PF04bKjFvuMabgmF8F1A85OnJLN48PGPhWr12Vt56uiBdC5AA0QGlYhSqmC19Iz4MKLHcjGNV4FprVzo8n5zuyMkaZS3hgEAVJWQUzJzf9si4jb79R-uXTYno4QRzttUUo</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Koltuk, Furkan</creator><creator>Schmidt, Ece Guran</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202007</creationdate><title>A Novel Method for the Synthetic Generation of Non-I.I.D Workloads for Cloud Data Centers</title><author>Koltuk, Furkan ; Schmidt, Ece Guran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-1811fc06ee557fd85d0123d3b15cacd7f088aae5522b9b995967d99e131556f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>cloud computing</topic><topic>Computers</topic><topic>Data centers</topic><topic>Data models</topic><topic>distribution fitting</topic><topic>Fitting</topic><topic>Internet</topic><topic>model-based workload generation</topic><toplevel>online_resources</toplevel><creatorcontrib>Koltuk, Furkan</creatorcontrib><creatorcontrib>Schmidt, Ece Guran</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Koltuk, Furkan</au><au>Schmidt, Ece Guran</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Novel Method for the Synthetic Generation of Non-I.I.D Workloads for Cloud Data Centers</atitle><btitle>2020 IEEE Symposium on Computers and Communications (ISCC)</btitle><stitle>ISCC</stitle><date>2020-07</date><risdate>2020</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2642-7389</eissn><eisbn>9781728180861</eisbn><eisbn>1728180864</eisbn><abstract>Cloud data center workloads have time- dependencies and are hence non-i.i.d (independent and identically distributed). In this paper, we propose a new model-based method for creating synthetic workload traces for cloud data centers that have similar time characteristics and cumulative distributions to those of the actual traces. We evaluate our method using the actual resource request traces of Azure collected in 2019 and the well-known Google cloud trace. Our method enables generating synthetic traces that can be used for a more realistic evaluation of cloud data centers.</abstract><pub>IEEE</pub><doi>10.1109/ISCC50000.2020.9219577</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2642-7389
ispartof 2020 IEEE Symposium on Computers and Communications (ISCC), 2020, p.1-6
issn 2642-7389
language eng
recordid cdi_ieee_primary_9219577
source IEEE Xplore All Conference Series
subjects cloud computing
Computers
Data centers
Data models
distribution fitting
Fitting
Internet
model-based workload generation
title A Novel Method for the Synthetic Generation of Non-I.I.D Workloads for Cloud Data Centers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A23%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Novel%20Method%20for%20the%20Synthetic%20Generation%20of%20Non-I.I.D%20Workloads%20for%20Cloud%20Data%20Centers&rft.btitle=2020%20IEEE%20Symposium%20on%20Computers%20and%20Communications%20(ISCC)&rft.au=Koltuk,%20Furkan&rft.date=2020-07&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2642-7389&rft_id=info:doi/10.1109/ISCC50000.2020.9219577&rft.eisbn=9781728180861&rft.eisbn_list=1728180864&rft_dat=%3Cieee_CHZPO%3E9219577%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-1811fc06ee557fd85d0123d3b15cacd7f088aae5522b9b995967d99e131556f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9219577&rfr_iscdi=true