Loading…

Estimation of Tire Load and Vehicle Parameters Using Intelligent Tires Combined With Vehicle Dynamics

This article focuses on the estimation of static/ dynamic tire load and vehicle parameters using intelligent tires and vehicle dynamics. This study is conducted to improve and ensure the performance of advanced vehicle control using accurate vehicle and tire states. The contact angle between tire an...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on instrumentation and measurement 2021, Vol.70, p.1-12
Main Authors: Jeong, Dasol, Kim, Seungtaek, Lee, Jonghyup, Choi, Seibum B., Kim, Mintae, Lee, Hojong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-c8967b2b2dae4757cd55f109d7431b01c18e2d5a59a5e765c95a7afcc714321b3
cites cdi_FETCH-LOGICAL-c291t-c8967b2b2dae4757cd55f109d7431b01c18e2d5a59a5e765c95a7afcc714321b3
container_end_page 12
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 70
creator Jeong, Dasol
Kim, Seungtaek
Lee, Jonghyup
Choi, Seibum B.
Kim, Mintae
Lee, Hojong
description This article focuses on the estimation of static/ dynamic tire load and vehicle parameters using intelligent tires and vehicle dynamics. This study is conducted to improve and ensure the performance of advanced vehicle control using accurate vehicle and tire states. The contact angle between tire and road surface is calculated by an intelligent tire and is used for tire load estimation. The tire load estimation results are validated by the flexible ring tire model. For a fast sampling rate and high robustness, a new estimation algorithm, which combines intelligent tire and vehicle dynamics, is proposed in this article. Not only the tire load but also the vehicle parameters, such as total mass, center of gravity point (CG point), and center of gravity height (CG height), are estimated by the proposed estimation algorithm. The proposed estimation algorithm is verified by an indoor test using Flac trac (tire test system) and a real-time test using AutoBox III. In short, the estimation algorithm proposed in this article can estimate static/dynamic tire load and vehicle parameters with a fast sampling rate and high robustness.
doi_str_mv 10.1109/TIM.2020.3031124
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9223672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9223672</ieee_id><sourcerecordid>2474855966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-c8967b2b2dae4757cd55f109d7431b01c18e2d5a59a5e765c95a7afcc714321b3</originalsourceid><addsrcrecordid>eNo9kEFPwjAUgBujiYjeTbw08Txsu3ZdjwZRSTB6AD02XfcGJazDthz49w4hnN7l-97L-xC6p2REKVFP8-nHiBFGRjnJKWX8Ag2oEDJTRcEu0YAQWmaKi-Ia3cS4JoTIgssBgklMrjXJdR53DZ67AHjWmRobX-NvWDm7AfxlgmkhQYh4EZ1f4qlPsNm4Jfj0r0Q87trKeajxj0urs_iy96Z1Nt6iq8ZsItyd5hAtXifz8Xs2-3ybjp9nmWWKpsyWqpAVq1htgEshbS1E0z9XS57TilBLS2C1MEIZAbIQVgkjTWOtpDxntMqH6PG4dxu63x3EpNfdLvj-pGZc8lKIPkdPkSNlQxdjgEZvQ98g7DUl-hBT9zH1IaY-xeyVh6PiAOCMK8byQrL8DyIOb_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474855966</pqid></control><display><type>article</type><title>Estimation of Tire Load and Vehicle Parameters Using Intelligent Tires Combined With Vehicle Dynamics</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Jeong, Dasol ; Kim, Seungtaek ; Lee, Jonghyup ; Choi, Seibum B. ; Kim, Mintae ; Lee, Hojong</creator><creatorcontrib>Jeong, Dasol ; Kim, Seungtaek ; Lee, Jonghyup ; Choi, Seibum B. ; Kim, Mintae ; Lee, Hojong</creatorcontrib><description>This article focuses on the estimation of static/ dynamic tire load and vehicle parameters using intelligent tires and vehicle dynamics. This study is conducted to improve and ensure the performance of advanced vehicle control using accurate vehicle and tire states. The contact angle between tire and road surface is calculated by an intelligent tire and is used for tire load estimation. The tire load estimation results are validated by the flexible ring tire model. For a fast sampling rate and high robustness, a new estimation algorithm, which combines intelligent tire and vehicle dynamics, is proposed in this article. Not only the tire load but also the vehicle parameters, such as total mass, center of gravity point (CG point), and center of gravity height (CG height), are estimated by the proposed estimation algorithm. The proposed estimation algorithm is verified by an indoor test using Flac trac (tire test system) and a real-time test using AutoBox III. In short, the estimation algorithm proposed in this article can estimate static/dynamic tire load and vehicle parameters with a fast sampling rate and high robustness.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2020.3031124</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Center of gravity ; Contact angle ; Estimation ; Flexible ring tire model ; Gravity ; Heuristic algorithms ; intelligent tires ; Load modeling ; load transfer ; Mirrors ; multi-input multi-output (MIMO) system ; Parameters ; Roads ; Robustness ; Sampling ; tire load ; Tires ; Vehicle dynamics ; vehicle parameter</subject><ispartof>IEEE transactions on instrumentation and measurement, 2021, Vol.70, p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-c8967b2b2dae4757cd55f109d7431b01c18e2d5a59a5e765c95a7afcc714321b3</citedby><cites>FETCH-LOGICAL-c291t-c8967b2b2dae4757cd55f109d7431b01c18e2d5a59a5e765c95a7afcc714321b3</cites><orcidid>0000-0002-0206-5401 ; 0000000303291184 ; 0000-0002-1022-5129 ; 0000-0002-8555-4429 ; 0000-0001-8412-9458 ; 0000-0001-8517-1244 ; 0000-0003-0329-1184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9223672$$EHTML$$P50$$Gieee$$H</linktohtml></links><search><creatorcontrib>Jeong, Dasol</creatorcontrib><creatorcontrib>Kim, Seungtaek</creatorcontrib><creatorcontrib>Lee, Jonghyup</creatorcontrib><creatorcontrib>Choi, Seibum B.</creatorcontrib><creatorcontrib>Kim, Mintae</creatorcontrib><creatorcontrib>Lee, Hojong</creatorcontrib><title>Estimation of Tire Load and Vehicle Parameters Using Intelligent Tires Combined With Vehicle Dynamics</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>This article focuses on the estimation of static/ dynamic tire load and vehicle parameters using intelligent tires and vehicle dynamics. This study is conducted to improve and ensure the performance of advanced vehicle control using accurate vehicle and tire states. The contact angle between tire and road surface is calculated by an intelligent tire and is used for tire load estimation. The tire load estimation results are validated by the flexible ring tire model. For a fast sampling rate and high robustness, a new estimation algorithm, which combines intelligent tire and vehicle dynamics, is proposed in this article. Not only the tire load but also the vehicle parameters, such as total mass, center of gravity point (CG point), and center of gravity height (CG height), are estimated by the proposed estimation algorithm. The proposed estimation algorithm is verified by an indoor test using Flac trac (tire test system) and a real-time test using AutoBox III. In short, the estimation algorithm proposed in this article can estimate static/dynamic tire load and vehicle parameters with a fast sampling rate and high robustness.</description><subject>Algorithms</subject><subject>Center of gravity</subject><subject>Contact angle</subject><subject>Estimation</subject><subject>Flexible ring tire model</subject><subject>Gravity</subject><subject>Heuristic algorithms</subject><subject>intelligent tires</subject><subject>Load modeling</subject><subject>load transfer</subject><subject>Mirrors</subject><subject>multi-input multi-output (MIMO) system</subject><subject>Parameters</subject><subject>Roads</subject><subject>Robustness</subject><subject>Sampling</subject><subject>tire load</subject><subject>Tires</subject><subject>Vehicle dynamics</subject><subject>vehicle parameter</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEFPwjAUgBujiYjeTbw08Txsu3ZdjwZRSTB6AD02XfcGJazDthz49w4hnN7l-97L-xC6p2REKVFP8-nHiBFGRjnJKWX8Ag2oEDJTRcEu0YAQWmaKi-Ia3cS4JoTIgssBgklMrjXJdR53DZ67AHjWmRobX-NvWDm7AfxlgmkhQYh4EZ1f4qlPsNm4Jfj0r0Q87trKeajxj0urs_iy96Z1Nt6iq8ZsItyd5hAtXifz8Xs2-3ybjp9nmWWKpsyWqpAVq1htgEshbS1E0z9XS57TilBLS2C1MEIZAbIQVgkjTWOtpDxntMqH6PG4dxu63x3EpNfdLvj-pGZc8lKIPkdPkSNlQxdjgEZvQ98g7DUl-hBT9zH1IaY-xeyVh6PiAOCMK8byQrL8DyIOb_Q</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Jeong, Dasol</creator><creator>Kim, Seungtaek</creator><creator>Lee, Jonghyup</creator><creator>Choi, Seibum B.</creator><creator>Kim, Mintae</creator><creator>Lee, Hojong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0206-5401</orcidid><orcidid>https://orcid.org/0000000303291184</orcidid><orcidid>https://orcid.org/0000-0002-1022-5129</orcidid><orcidid>https://orcid.org/0000-0002-8555-4429</orcidid><orcidid>https://orcid.org/0000-0001-8412-9458</orcidid><orcidid>https://orcid.org/0000-0001-8517-1244</orcidid><orcidid>https://orcid.org/0000-0003-0329-1184</orcidid></search><sort><creationdate>2021</creationdate><title>Estimation of Tire Load and Vehicle Parameters Using Intelligent Tires Combined With Vehicle Dynamics</title><author>Jeong, Dasol ; Kim, Seungtaek ; Lee, Jonghyup ; Choi, Seibum B. ; Kim, Mintae ; Lee, Hojong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-c8967b2b2dae4757cd55f109d7431b01c18e2d5a59a5e765c95a7afcc714321b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Center of gravity</topic><topic>Contact angle</topic><topic>Estimation</topic><topic>Flexible ring tire model</topic><topic>Gravity</topic><topic>Heuristic algorithms</topic><topic>intelligent tires</topic><topic>Load modeling</topic><topic>load transfer</topic><topic>Mirrors</topic><topic>multi-input multi-output (MIMO) system</topic><topic>Parameters</topic><topic>Roads</topic><topic>Robustness</topic><topic>Sampling</topic><topic>tire load</topic><topic>Tires</topic><topic>Vehicle dynamics</topic><topic>vehicle parameter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Dasol</creatorcontrib><creatorcontrib>Kim, Seungtaek</creatorcontrib><creatorcontrib>Lee, Jonghyup</creatorcontrib><creatorcontrib>Choi, Seibum B.</creatorcontrib><creatorcontrib>Kim, Mintae</creatorcontrib><creatorcontrib>Lee, Hojong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Dasol</au><au>Kim, Seungtaek</au><au>Lee, Jonghyup</au><au>Choi, Seibum B.</au><au>Kim, Mintae</au><au>Lee, Hojong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of Tire Load and Vehicle Parameters Using Intelligent Tires Combined With Vehicle Dynamics</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2021</date><risdate>2021</risdate><volume>70</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>This article focuses on the estimation of static/ dynamic tire load and vehicle parameters using intelligent tires and vehicle dynamics. This study is conducted to improve and ensure the performance of advanced vehicle control using accurate vehicle and tire states. The contact angle between tire and road surface is calculated by an intelligent tire and is used for tire load estimation. The tire load estimation results are validated by the flexible ring tire model. For a fast sampling rate and high robustness, a new estimation algorithm, which combines intelligent tire and vehicle dynamics, is proposed in this article. Not only the tire load but also the vehicle parameters, such as total mass, center of gravity point (CG point), and center of gravity height (CG height), are estimated by the proposed estimation algorithm. The proposed estimation algorithm is verified by an indoor test using Flac trac (tire test system) and a real-time test using AutoBox III. In short, the estimation algorithm proposed in this article can estimate static/dynamic tire load and vehicle parameters with a fast sampling rate and high robustness.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2020.3031124</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0206-5401</orcidid><orcidid>https://orcid.org/0000000303291184</orcidid><orcidid>https://orcid.org/0000-0002-1022-5129</orcidid><orcidid>https://orcid.org/0000-0002-8555-4429</orcidid><orcidid>https://orcid.org/0000-0001-8412-9458</orcidid><orcidid>https://orcid.org/0000-0001-8517-1244</orcidid><orcidid>https://orcid.org/0000-0003-0329-1184</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2021, Vol.70, p.1-12
issn 0018-9456
1557-9662
language eng
recordid cdi_ieee_primary_9223672
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Center of gravity
Contact angle
Estimation
Flexible ring tire model
Gravity
Heuristic algorithms
intelligent tires
Load modeling
load transfer
Mirrors
multi-input multi-output (MIMO) system
Parameters
Roads
Robustness
Sampling
tire load
Tires
Vehicle dynamics
vehicle parameter
title Estimation of Tire Load and Vehicle Parameters Using Intelligent Tires Combined With Vehicle Dynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-09T06%3A45%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20Tire%20Load%20and%20Vehicle%20Parameters%20Using%20Intelligent%20Tires%20Combined%20With%20Vehicle%20Dynamics&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Jeong,%20Dasol&rft.date=2021&rft.volume=70&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2020.3031124&rft_dat=%3Cproquest_ieee_%3E2474855966%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-c8967b2b2dae4757cd55f109d7431b01c18e2d5a59a5e765c95a7afcc714321b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2474855966&rft_id=info:pmid/&rft_ieee_id=9223672&rfr_iscdi=true