Loading…
High-Resolution Millimeter-Wave Tomography System for Characterization of Low-Permittivity Materials
Tomographic microwave imaging is employed in numerous industrial applications, e.g., nondestructive testing. However, most existing systems are not suitable for measurements of low-permittivity materials such as gaseous substances or insulating foam with high air content. This paper introduces a 79...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Tomographic microwave imaging is employed in numerous industrial applications, e.g., nondestructive testing. However, most existing systems are not suitable for measurements of low-permittivity materials such as gaseous substances or insulating foam with high air content. This paper introduces a 79 GHz high-resolution tomography system enabling characterization of materials with relative permittivity close to one. It is based on fully-integrated frequency-modulated continuous-wave radar transceivers which significantly reduce cost and complexity. A first prototype is built with two radar sensors and a rotary stage to emulate a higher sensor count. The medium-dependent time-of-flight through the area-under-test is evaluated and Tikhonov regularization is applied to solve the inverse problem and reconstruct a 2D image. System simulations and measurements with low-permittivity foam objects confirm the feasibility of this approach. |
---|---|
ISSN: | 2576-7216 |
DOI: | 10.1109/IMS30576.2020.9224048 |