Loading…
Hollow Core Inhibited Coupled Antiresonant Terahertz Fiber: A Numerical and Experimental Study
In this article, a hollow core antiresonant photonic crystal fiber is analyzed for terahertz applications. A numerical analysis of the proposed fiber is first carried out to minimize coupling between the core and cladding modes. The modeling of the scaled-up and inhibited coupling fiber is carried o...
Saved in:
Published in: | IEEE transactions on terahertz science and technology 2021-05, Vol.11 (3), p.245-260 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this article, a hollow core antiresonant photonic crystal fiber is analyzed for terahertz applications. A numerical analysis of the proposed fiber is first carried out to minimize coupling between the core and cladding modes. The modeling of the scaled-up and inhibited coupling fiber is carried out by means of a finite element method, which is then demonstrated using a Zeonex filament fiber, fabricated by fused deposition modeling of 3-D printing technology. The simulation is carried out to analyze both the transmission and possibility of refractometric sensing, whereas the experimental analysis is carried out using terahertz time-domain spectroscopy, and supports our numerical findings, illustrating how the proposed fibers can be used for low-loss transmission of terahertz waves. The simplicity of the proposed fiber structures facilitates fabrication for a number of different transmission and sensing applications in the terahertz range. |
---|---|
ISSN: | 2156-342X 2156-3446 |
DOI: | 10.1109/TTHZ.2020.3031727 |