Loading…

A computational method for segmenting topological point-sets and application to image analysis

We propose a computational method for segmenting topological subdimensional point-sets in scalar images of arbitrary spatial dimensions. The technique is based on calculating the homotopy class defined by the gradient vector in a subdimensional neighborhood around every image point. This neighborhoo...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 2001-05, Vol.23 (5), p.447-459
Main Authors: Kalitzin, S.N., Staal, J., ter Haar Romeny, B.M., Viergever, M.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We propose a computational method for segmenting topological subdimensional point-sets in scalar images of arbitrary spatial dimensions. The technique is based on calculating the homotopy class defined by the gradient vector in a subdimensional neighborhood around every image point. This neighborhood is defined as the linear envelope spawned over a given subdimensional vector frame. In the simplest case where the rank of this frame is maximal, we obtain a technique for localizing the critical points. We consider, in particular, the important case of frames formed by an arbitrary number of the first largest by absolute value principal directions of the Hessian. The method then segments positive and and negative ridges as well as other types of critical surfaces of different dimensionalities. The signs of the eigenvalues associated to the principal directions provide a natural labeling of the critical subsets. The result, in general, is a constructive definition of a hierarchy of point-sets of different dimensionalities linked by inclusion relations. Because of its explicit computational nature, the method gives a fast way to segment height ridges or edges in different applications. The defined topological point-sets are connected manifolds and, therefore, our method provides a tool for geometrical grouping using only local measurements. We have demonstrated the grouping properties of our construction by presenting two different cases where an extra image coordinate is introduced.
ISSN:0162-8828
1939-3539
DOI:10.1109/34.922704