Loading…

OpenRTiST: End-to-End Benchmarking for Edge Computing

The growth of edge computing depends on large-scale deployments of edge infrastructure. Benchmarking applications are needed to compare the performance across different edge deployments and against device-only and cloud-only implementations. In this article, we present OpenRTiST, an open-source appl...

Full description

Saved in:
Bibliographic Details
Published in:IEEE pervasive computing 2020-10, Vol.19 (4), p.10-18
Main Authors: George, Shilpa, Eiszler, Thomas, Iyengar, Roger, Turki, Haithem, Feng, Ziqiang, Wang, Junjue, Pillai, Padmanabhan, Satyanarayanan, Mahadev
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c384t-cceda0e9ad4c599470c9a5f6f7e5d170417f80c9198468a84136fe2aabedfa953
cites cdi_FETCH-LOGICAL-c384t-cceda0e9ad4c599470c9a5f6f7e5d170417f80c9198468a84136fe2aabedfa953
container_end_page 18
container_issue 4
container_start_page 10
container_title IEEE pervasive computing
container_volume 19
creator George, Shilpa
Eiszler, Thomas
Iyengar, Roger
Turki, Haithem
Feng, Ziqiang
Wang, Junjue
Pillai, Padmanabhan
Satyanarayanan, Mahadev
description The growth of edge computing depends on large-scale deployments of edge infrastructure. Benchmarking applications are needed to compare the performance across different edge deployments and against device-only and cloud-only implementations. In this article, we present OpenRTiST, an open-source application that is simultaneously compute-intensive, bandwidth-hungry, and latency-sensitive. It implements a form of augmented reality that lets you “see the world through the eyes of an artist.” We compare end-to-end application latency over varying network conditions and measure performance across a variety of edge platforms. OpenRTiST is designed to be easily deployed and has been used to showcase the benefits of edge computing.
doi_str_mv 10.1109/MPRV.2020.3028781
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9229154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9229154</ieee_id><sourcerecordid>2462227001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-cceda0e9ad4c599470c9a5f6f7e5d170417f80c9198468a84136fe2aabedfa953</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwAIhLJM4uXsdObG5QpYBUVFQKV8s465JCk-CkB94eR604zWo1sz8fIZfAJgBM3zy_LN8nnHE2SRlXuYIjMgIpFeVSs-OhTjMKPFOn5KzrNoyB0lqPiFy0WC9X1evqNinqkvYNjZLcY-0-tzZ8VfU68U1IinKNybTZtrs-ts7JibffHV4cdEzeZsVq-kjni4en6d2culSJnjqHpWWobSmc1FrkzGkrfeZzlCXkTEDuVeyBViJTVglIM4_c2g8svdUyHZPr_dw2ND877HqzaXahjisNFxnnPI-PRBfsXS40XRfQmzZU8fhfA8wMdMxAxwx0zIFOzFztMxUi_vs15xqkSP8A0vFfCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462227001</pqid></control><display><type>article</type><title>OpenRTiST: End-to-End Benchmarking for Edge Computing</title><source>IEEE Xplore (Online service)</source><creator>George, Shilpa ; Eiszler, Thomas ; Iyengar, Roger ; Turki, Haithem ; Feng, Ziqiang ; Wang, Junjue ; Pillai, Padmanabhan ; Satyanarayanan, Mahadev</creator><creatorcontrib>George, Shilpa ; Eiszler, Thomas ; Iyengar, Roger ; Turki, Haithem ; Feng, Ziqiang ; Wang, Junjue ; Pillai, Padmanabhan ; Satyanarayanan, Mahadev</creatorcontrib><description>The growth of edge computing depends on large-scale deployments of edge infrastructure. Benchmarking applications are needed to compare the performance across different edge deployments and against device-only and cloud-only implementations. In this article, we present OpenRTiST, an open-source application that is simultaneously compute-intensive, bandwidth-hungry, and latency-sensitive. It implements a form of augmented reality that lets you “see the world through the eyes of an artist.” We compare end-to-end application latency over varying network conditions and measure performance across a variety of edge platforms. OpenRTiST is designed to be easily deployed and has been used to showcase the benefits of edge computing.</description><identifier>ISSN: 1536-1268</identifier><identifier>EISSN: 1558-2590</identifier><identifier>DOI: 10.1109/MPRV.2020.3028781</identifier><identifier>CODEN: IPCECF</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Augmented reality ; Benchmarks ; Cloud computing ; Edge computing ; Feeds ; Graphics processing units ; Image edge detection ; Network latency ; Performance evaluation ; Servers</subject><ispartof>IEEE pervasive computing, 2020-10, Vol.19 (4), p.10-18</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-cceda0e9ad4c599470c9a5f6f7e5d170417f80c9198468a84136fe2aabedfa953</citedby><cites>FETCH-LOGICAL-c384t-cceda0e9ad4c599470c9a5f6f7e5d170417f80c9198468a84136fe2aabedfa953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9229154$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>George, Shilpa</creatorcontrib><creatorcontrib>Eiszler, Thomas</creatorcontrib><creatorcontrib>Iyengar, Roger</creatorcontrib><creatorcontrib>Turki, Haithem</creatorcontrib><creatorcontrib>Feng, Ziqiang</creatorcontrib><creatorcontrib>Wang, Junjue</creatorcontrib><creatorcontrib>Pillai, Padmanabhan</creatorcontrib><creatorcontrib>Satyanarayanan, Mahadev</creatorcontrib><title>OpenRTiST: End-to-End Benchmarking for Edge Computing</title><title>IEEE pervasive computing</title><addtitle>MPRV</addtitle><description>The growth of edge computing depends on large-scale deployments of edge infrastructure. Benchmarking applications are needed to compare the performance across different edge deployments and against device-only and cloud-only implementations. In this article, we present OpenRTiST, an open-source application that is simultaneously compute-intensive, bandwidth-hungry, and latency-sensitive. It implements a form of augmented reality that lets you “see the world through the eyes of an artist.” We compare end-to-end application latency over varying network conditions and measure performance across a variety of edge platforms. OpenRTiST is designed to be easily deployed and has been used to showcase the benefits of edge computing.</description><subject>Augmented reality</subject><subject>Benchmarks</subject><subject>Cloud computing</subject><subject>Edge computing</subject><subject>Feeds</subject><subject>Graphics processing units</subject><subject>Image edge detection</subject><subject>Network latency</subject><subject>Performance evaluation</subject><subject>Servers</subject><issn>1536-1268</issn><issn>1558-2590</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNo9kM1OwzAQhC0EEqXwAIhLJM4uXsdObG5QpYBUVFQKV8s465JCk-CkB94eR604zWo1sz8fIZfAJgBM3zy_LN8nnHE2SRlXuYIjMgIpFeVSs-OhTjMKPFOn5KzrNoyB0lqPiFy0WC9X1evqNinqkvYNjZLcY-0-tzZ8VfU68U1IinKNybTZtrs-ts7JibffHV4cdEzeZsVq-kjni4en6d2culSJnjqHpWWobSmc1FrkzGkrfeZzlCXkTEDuVeyBViJTVglIM4_c2g8svdUyHZPr_dw2ND877HqzaXahjisNFxnnPI-PRBfsXS40XRfQmzZU8fhfA8wMdMxAxwx0zIFOzFztMxUi_vs15xqkSP8A0vFfCQ</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>George, Shilpa</creator><creator>Eiszler, Thomas</creator><creator>Iyengar, Roger</creator><creator>Turki, Haithem</creator><creator>Feng, Ziqiang</creator><creator>Wang, Junjue</creator><creator>Pillai, Padmanabhan</creator><creator>Satyanarayanan, Mahadev</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20201001</creationdate><title>OpenRTiST: End-to-End Benchmarking for Edge Computing</title><author>George, Shilpa ; Eiszler, Thomas ; Iyengar, Roger ; Turki, Haithem ; Feng, Ziqiang ; Wang, Junjue ; Pillai, Padmanabhan ; Satyanarayanan, Mahadev</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-cceda0e9ad4c599470c9a5f6f7e5d170417f80c9198468a84136fe2aabedfa953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Augmented reality</topic><topic>Benchmarks</topic><topic>Cloud computing</topic><topic>Edge computing</topic><topic>Feeds</topic><topic>Graphics processing units</topic><topic>Image edge detection</topic><topic>Network latency</topic><topic>Performance evaluation</topic><topic>Servers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>George, Shilpa</creatorcontrib><creatorcontrib>Eiszler, Thomas</creatorcontrib><creatorcontrib>Iyengar, Roger</creatorcontrib><creatorcontrib>Turki, Haithem</creatorcontrib><creatorcontrib>Feng, Ziqiang</creatorcontrib><creatorcontrib>Wang, Junjue</creatorcontrib><creatorcontrib>Pillai, Padmanabhan</creatorcontrib><creatorcontrib>Satyanarayanan, Mahadev</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE pervasive computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>George, Shilpa</au><au>Eiszler, Thomas</au><au>Iyengar, Roger</au><au>Turki, Haithem</au><au>Feng, Ziqiang</au><au>Wang, Junjue</au><au>Pillai, Padmanabhan</au><au>Satyanarayanan, Mahadev</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OpenRTiST: End-to-End Benchmarking for Edge Computing</atitle><jtitle>IEEE pervasive computing</jtitle><stitle>MPRV</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>19</volume><issue>4</issue><spage>10</spage><epage>18</epage><pages>10-18</pages><issn>1536-1268</issn><eissn>1558-2590</eissn><coden>IPCECF</coden><abstract>The growth of edge computing depends on large-scale deployments of edge infrastructure. Benchmarking applications are needed to compare the performance across different edge deployments and against device-only and cloud-only implementations. In this article, we present OpenRTiST, an open-source application that is simultaneously compute-intensive, bandwidth-hungry, and latency-sensitive. It implements a form of augmented reality that lets you “see the world through the eyes of an artist.” We compare end-to-end application latency over varying network conditions and measure performance across a variety of edge platforms. OpenRTiST is designed to be easily deployed and has been used to showcase the benefits of edge computing.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MPRV.2020.3028781</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1536-1268
ispartof IEEE pervasive computing, 2020-10, Vol.19 (4), p.10-18
issn 1536-1268
1558-2590
language eng
recordid cdi_ieee_primary_9229154
source IEEE Xplore (Online service)
subjects Augmented reality
Benchmarks
Cloud computing
Edge computing
Feeds
Graphics processing units
Image edge detection
Network latency
Performance evaluation
Servers
title OpenRTiST: End-to-End Benchmarking for Edge Computing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A55%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OpenRTiST:%20End-to-End%20Benchmarking%20for%20Edge%20Computing&rft.jtitle=IEEE%20pervasive%20computing&rft.au=George,%20Shilpa&rft.date=2020-10-01&rft.volume=19&rft.issue=4&rft.spage=10&rft.epage=18&rft.pages=10-18&rft.issn=1536-1268&rft.eissn=1558-2590&rft.coden=IPCECF&rft_id=info:doi/10.1109/MPRV.2020.3028781&rft_dat=%3Cproquest_ieee_%3E2462227001%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-cceda0e9ad4c599470c9a5f6f7e5d170417f80c9198468a84136fe2aabedfa953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2462227001&rft_id=info:pmid/&rft_ieee_id=9229154&rfr_iscdi=true