Loading…
Numerical Investigation of a self-detuning Signal Enhancement Metasurface for 3T MRI
In this work, numerical simulation results regarding an automatically self-detuning signal enhancement plate (DSEP) for use in magnetic resonance imaging at 3T field are presented. The DSEP is composed of a linear alignment of wire resonators milled on a suitable PCB and inductively coupled to a var...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, numerical simulation results regarding an automatically self-detuning signal enhancement plate (DSEP) for use in magnetic resonance imaging at 3T field are presented. The DSEP is composed of a linear alignment of wire resonators milled on a suitable PCB and inductively coupled to a varactor-loaded detuning loop. Eigenmode simulations allow to design the coupled system, whereas full-wave simulations of the device, excited by a circularly-polarized plane wave in the pres-ence of a phantom, show the detuning efficiency. In terms of H-field magnitude, a maximal enhancement factor of about four is observed at the target frequency of 123.5 MHz. |
---|---|
ISSN: | 2642-4339 |
DOI: | 10.23919/URSIGASS49373.2020.9232401 |