Loading…

Improved Land Cover Classification of VHR Optical Remote Sensing Imagery Based Upon Detail Injection Procedure

Development of very-high-resolution (VHR) remote sensing imaging platforms have resulted in a requirement for developing refined land cover classification maps for various applications. Therefore, aiming at exploring the accurate boundary and complex interior texture retrieval in VHR optical remote...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in applied earth observations and remote sensing 2021, Vol.14, p.18-31
Main Authors: Sang, Qianbo, Zhuang, Yin, Dong, Shan, Wang, Guanqun, Chen, He, Li, Lianlin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-55a8d17ed31e9aed9922416d78527ea29c94d9c2a2ef0e607831328457f288533
cites cdi_FETCH-LOGICAL-c408t-55a8d17ed31e9aed9922416d78527ea29c94d9c2a2ef0e607831328457f288533
container_end_page 31
container_issue
container_start_page 18
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 14
creator Sang, Qianbo
Zhuang, Yin
Dong, Shan
Wang, Guanqun
Chen, He
Li, Lianlin
description Development of very-high-resolution (VHR) remote sensing imaging platforms have resulted in a requirement for developing refined land cover classification maps for various applications. Therefore, aiming at exploring the accurate boundary and complex interior texture retrieval in VHR optical remote sensing images, a novel detail injection network (DI-Net) is proposed in this article, which is composed of three aspects. First, the decoupling refinement module embedded with a multiscale representation is designed to improve the feature extraction capabilities that precede the encoding-to-decoding process. Second, we pay attention to the hard examples of boundary and complex interior texture in land cover classification and design two detail injection attention modules to solve the feature inactivation phenomenon in gradually convolutional encoding-to-decoding process. Third, a specific stage grading loss is proposed to adaptively regulate the structural-level weights of the encoding and decoding stages, which facilitates the details retrieval and produce refined land cover classification results. Finally, various datasets [incl. International Society for Photogrammetry and Remote Sensing (ISPRS) and Gaofen Image Dataset (GID)] are employed to demonstrate that the proposed DI-Net achieves better performance than state-of-the-art methods. DI-Net provides more accurate boundaries and more consistent interior textures, and it achieves 86.86% PA and 68.37% mIoU on ISPRS dataset as well as 77.04% PA and 64.38% mIoU on GID dataset, respectively.
doi_str_mv 10.1109/JSTARS.2020.3032423
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9234690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9234690</ieee_id><doaj_id>oai_doaj_org_article_3b45110774ce49b3b8a5eea5c0a68793</doaj_id><sourcerecordid>2475959227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-55a8d17ed31e9aed9922416d78527ea29c94d9c2a2ef0e607831328457f288533</originalsourceid><addsrcrecordid>eNo9kctu2zAQRYWgAeqm-YJsCGQtl0-RXKbuIyoMpLCTbokxOTJkyKJLygXy92WiIKshBnPPDO-tqhtGl4xR--XX9vFus11yyulSUMElFxfVgjPFaqaE-lAtmBW2ZpLKj9WnnA-UNlxbsajG9nhK8R8GsoYxkFV5JrIaIOe-6z1MfRxJ7Mif-w15OE2lM5ANHuOEZItj7sc9aY-wx_RMvkIulKdTEXzDCfqBtOMB_Svhd4oewznh5-qygyHj9Vu9qp5-fH9c3dfrh5_t6m5de0nNVCsFJjCNQTC0gMFaziVrgjaKawRuvZXBeg4cO4oN1UYwwY1UuuPGKCGuqnbmhggHd0r9EdKzi9C710ZMewepfGdAJ3ZSFRO1lh6l3YmdAYUIylNoTPGosG5nVjHq7xnz5A7xnMZyvuNSK6vKcbpMiXnKp5hzwu59K6PuJSQ3h-ReQnJvIRXVzazqEfFdYbmQjaXiPxU0jJE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475959227</pqid></control><display><type>article</type><title>Improved Land Cover Classification of VHR Optical Remote Sensing Imagery Based Upon Detail Injection Procedure</title><source>Alma/SFX Local Collection</source><creator>Sang, Qianbo ; Zhuang, Yin ; Dong, Shan ; Wang, Guanqun ; Chen, He ; Li, Lianlin</creator><creatorcontrib>Sang, Qianbo ; Zhuang, Yin ; Dong, Shan ; Wang, Guanqun ; Chen, He ; Li, Lianlin</creatorcontrib><description>Development of very-high-resolution (VHR) remote sensing imaging platforms have resulted in a requirement for developing refined land cover classification maps for various applications. Therefore, aiming at exploring the accurate boundary and complex interior texture retrieval in VHR optical remote sensing images, a novel detail injection network (DI-Net) is proposed in this article, which is composed of three aspects. First, the decoupling refinement module embedded with a multiscale representation is designed to improve the feature extraction capabilities that precede the encoding-to-decoding process. Second, we pay attention to the hard examples of boundary and complex interior texture in land cover classification and design two detail injection attention modules to solve the feature inactivation phenomenon in gradually convolutional encoding-to-decoding process. Third, a specific stage grading loss is proposed to adaptively regulate the structural-level weights of the encoding and decoding stages, which facilitates the details retrieval and produce refined land cover classification results. Finally, various datasets [incl. International Society for Photogrammetry and Remote Sensing (ISPRS) and Gaofen Image Dataset (GID)] are employed to demonstrate that the proposed DI-Net achieves better performance than state-of-the-art methods. DI-Net provides more accurate boundaries and more consistent interior textures, and it achieves 86.86% PA and 68.37% mIoU on ISPRS dataset as well as 77.04% PA and 64.38% mIoU on GID dataset, respectively.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2020.3032423</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Classification ; Convolution ; Datasets ; Decoding ; Decoupling ; Encoding-to-decoding ; Feature extraction ; Image classification ; Image resolution ; Imagery ; Inactivation ; Injection ; Land cover ; land cover classification ; Modules ; Optical imaging ; optical remote sensing ; Optical sensors ; Photogrammetry ; refinement module ; Remote sensing ; Retrieval ; Semantics ; Texture ; unmanned aerial vehicles (UAVs) ; very high resolution (VHR) ; Work platforms</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.18-31</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-55a8d17ed31e9aed9922416d78527ea29c94d9c2a2ef0e607831328457f288533</citedby><cites>FETCH-LOGICAL-c408t-55a8d17ed31e9aed9922416d78527ea29c94d9c2a2ef0e607831328457f288533</cites><orcidid>0000-0002-7850-8766 ; 0000-0002-7737-0144 ; 0000-0002-0443-1081 ; 0000-0003-1894-7449 ; 0000-0002-2295-4425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Sang, Qianbo</creatorcontrib><creatorcontrib>Zhuang, Yin</creatorcontrib><creatorcontrib>Dong, Shan</creatorcontrib><creatorcontrib>Wang, Guanqun</creatorcontrib><creatorcontrib>Chen, He</creatorcontrib><creatorcontrib>Li, Lianlin</creatorcontrib><title>Improved Land Cover Classification of VHR Optical Remote Sensing Imagery Based Upon Detail Injection Procedure</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Development of very-high-resolution (VHR) remote sensing imaging platforms have resulted in a requirement for developing refined land cover classification maps for various applications. Therefore, aiming at exploring the accurate boundary and complex interior texture retrieval in VHR optical remote sensing images, a novel detail injection network (DI-Net) is proposed in this article, which is composed of three aspects. First, the decoupling refinement module embedded with a multiscale representation is designed to improve the feature extraction capabilities that precede the encoding-to-decoding process. Second, we pay attention to the hard examples of boundary and complex interior texture in land cover classification and design two detail injection attention modules to solve the feature inactivation phenomenon in gradually convolutional encoding-to-decoding process. Third, a specific stage grading loss is proposed to adaptively regulate the structural-level weights of the encoding and decoding stages, which facilitates the details retrieval and produce refined land cover classification results. Finally, various datasets [incl. International Society for Photogrammetry and Remote Sensing (ISPRS) and Gaofen Image Dataset (GID)] are employed to demonstrate that the proposed DI-Net achieves better performance than state-of-the-art methods. DI-Net provides more accurate boundaries and more consistent interior textures, and it achieves 86.86% PA and 68.37% mIoU on ISPRS dataset as well as 77.04% PA and 64.38% mIoU on GID dataset, respectively.</description><subject>Classification</subject><subject>Convolution</subject><subject>Datasets</subject><subject>Decoding</subject><subject>Decoupling</subject><subject>Encoding-to-decoding</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>Image resolution</subject><subject>Imagery</subject><subject>Inactivation</subject><subject>Injection</subject><subject>Land cover</subject><subject>land cover classification</subject><subject>Modules</subject><subject>Optical imaging</subject><subject>optical remote sensing</subject><subject>Optical sensors</subject><subject>Photogrammetry</subject><subject>refinement module</subject><subject>Remote sensing</subject><subject>Retrieval</subject><subject>Semantics</subject><subject>Texture</subject><subject>unmanned aerial vehicles (UAVs)</subject><subject>very high resolution (VHR)</subject><subject>Work platforms</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNo9kctu2zAQRYWgAeqm-YJsCGQtl0-RXKbuIyoMpLCTbokxOTJkyKJLygXy92WiIKshBnPPDO-tqhtGl4xR--XX9vFus11yyulSUMElFxfVgjPFaqaE-lAtmBW2ZpLKj9WnnA-UNlxbsajG9nhK8R8GsoYxkFV5JrIaIOe-6z1MfRxJ7Mif-w15OE2lM5ANHuOEZItj7sc9aY-wx_RMvkIulKdTEXzDCfqBtOMB_Svhd4oewznh5-qygyHj9Vu9qp5-fH9c3dfrh5_t6m5de0nNVCsFJjCNQTC0gMFaziVrgjaKawRuvZXBeg4cO4oN1UYwwY1UuuPGKCGuqnbmhggHd0r9EdKzi9C710ZMewepfGdAJ3ZSFRO1lh6l3YmdAYUIylNoTPGosG5nVjHq7xnz5A7xnMZyvuNSK6vKcbpMiXnKp5hzwu59K6PuJSQ3h-ReQnJvIRXVzazqEfFdYbmQjaXiPxU0jJE</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Sang, Qianbo</creator><creator>Zhuang, Yin</creator><creator>Dong, Shan</creator><creator>Wang, Guanqun</creator><creator>Chen, He</creator><creator>Li, Lianlin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7850-8766</orcidid><orcidid>https://orcid.org/0000-0002-7737-0144</orcidid><orcidid>https://orcid.org/0000-0002-0443-1081</orcidid><orcidid>https://orcid.org/0000-0003-1894-7449</orcidid><orcidid>https://orcid.org/0000-0002-2295-4425</orcidid></search><sort><creationdate>2021</creationdate><title>Improved Land Cover Classification of VHR Optical Remote Sensing Imagery Based Upon Detail Injection Procedure</title><author>Sang, Qianbo ; Zhuang, Yin ; Dong, Shan ; Wang, Guanqun ; Chen, He ; Li, Lianlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-55a8d17ed31e9aed9922416d78527ea29c94d9c2a2ef0e607831328457f288533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classification</topic><topic>Convolution</topic><topic>Datasets</topic><topic>Decoding</topic><topic>Decoupling</topic><topic>Encoding-to-decoding</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>Image resolution</topic><topic>Imagery</topic><topic>Inactivation</topic><topic>Injection</topic><topic>Land cover</topic><topic>land cover classification</topic><topic>Modules</topic><topic>Optical imaging</topic><topic>optical remote sensing</topic><topic>Optical sensors</topic><topic>Photogrammetry</topic><topic>refinement module</topic><topic>Remote sensing</topic><topic>Retrieval</topic><topic>Semantics</topic><topic>Texture</topic><topic>unmanned aerial vehicles (UAVs)</topic><topic>very high resolution (VHR)</topic><topic>Work platforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sang, Qianbo</creatorcontrib><creatorcontrib>Zhuang, Yin</creatorcontrib><creatorcontrib>Dong, Shan</creatorcontrib><creatorcontrib>Wang, Guanqun</creatorcontrib><creatorcontrib>Chen, He</creatorcontrib><creatorcontrib>Li, Lianlin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sang, Qianbo</au><au>Zhuang, Yin</au><au>Dong, Shan</au><au>Wang, Guanqun</au><au>Chen, He</au><au>Li, Lianlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Land Cover Classification of VHR Optical Remote Sensing Imagery Based Upon Detail Injection Procedure</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2021</date><risdate>2021</risdate><volume>14</volume><spage>18</spage><epage>31</epage><pages>18-31</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Development of very-high-resolution (VHR) remote sensing imaging platforms have resulted in a requirement for developing refined land cover classification maps for various applications. Therefore, aiming at exploring the accurate boundary and complex interior texture retrieval in VHR optical remote sensing images, a novel detail injection network (DI-Net) is proposed in this article, which is composed of three aspects. First, the decoupling refinement module embedded with a multiscale representation is designed to improve the feature extraction capabilities that precede the encoding-to-decoding process. Second, we pay attention to the hard examples of boundary and complex interior texture in land cover classification and design two detail injection attention modules to solve the feature inactivation phenomenon in gradually convolutional encoding-to-decoding process. Third, a specific stage grading loss is proposed to adaptively regulate the structural-level weights of the encoding and decoding stages, which facilitates the details retrieval and produce refined land cover classification results. Finally, various datasets [incl. International Society for Photogrammetry and Remote Sensing (ISPRS) and Gaofen Image Dataset (GID)] are employed to demonstrate that the proposed DI-Net achieves better performance than state-of-the-art methods. DI-Net provides more accurate boundaries and more consistent interior textures, and it achieves 86.86% PA and 68.37% mIoU on ISPRS dataset as well as 77.04% PA and 64.38% mIoU on GID dataset, respectively.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2020.3032423</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7850-8766</orcidid><orcidid>https://orcid.org/0000-0002-7737-0144</orcidid><orcidid>https://orcid.org/0000-0002-0443-1081</orcidid><orcidid>https://orcid.org/0000-0003-1894-7449</orcidid><orcidid>https://orcid.org/0000-0002-2295-4425</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.18-31
issn 1939-1404
2151-1535
language eng
recordid cdi_ieee_primary_9234690
source Alma/SFX Local Collection
subjects Classification
Convolution
Datasets
Decoding
Decoupling
Encoding-to-decoding
Feature extraction
Image classification
Image resolution
Imagery
Inactivation
Injection
Land cover
land cover classification
Modules
Optical imaging
optical remote sensing
Optical sensors
Photogrammetry
refinement module
Remote sensing
Retrieval
Semantics
Texture
unmanned aerial vehicles (UAVs)
very high resolution (VHR)
Work platforms
title Improved Land Cover Classification of VHR Optical Remote Sensing Imagery Based Upon Detail Injection Procedure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A17%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Land%20Cover%20Classification%20of%20VHR%20Optical%20Remote%20Sensing%20Imagery%20Based%20Upon%20Detail%20Injection%20Procedure&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Sang,%20Qianbo&rft.date=2021&rft.volume=14&rft.spage=18&rft.epage=31&rft.pages=18-31&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2020.3032423&rft_dat=%3Cproquest_ieee_%3E2475959227%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-55a8d17ed31e9aed9922416d78527ea29c94d9c2a2ef0e607831328457f288533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2475959227&rft_id=info:pmid/&rft_ieee_id=9234690&rfr_iscdi=true