Loading…
Improved Land Cover Classification of VHR Optical Remote Sensing Imagery Based Upon Detail Injection Procedure
Development of very-high-resolution (VHR) remote sensing imaging platforms have resulted in a requirement for developing refined land cover classification maps for various applications. Therefore, aiming at exploring the accurate boundary and complex interior texture retrieval in VHR optical remote...
Saved in:
Published in: | IEEE journal of selected topics in applied earth observations and remote sensing 2021, Vol.14, p.18-31 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-55a8d17ed31e9aed9922416d78527ea29c94d9c2a2ef0e607831328457f288533 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-55a8d17ed31e9aed9922416d78527ea29c94d9c2a2ef0e607831328457f288533 |
container_end_page | 31 |
container_issue | |
container_start_page | 18 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 14 |
creator | Sang, Qianbo Zhuang, Yin Dong, Shan Wang, Guanqun Chen, He Li, Lianlin |
description | Development of very-high-resolution (VHR) remote sensing imaging platforms have resulted in a requirement for developing refined land cover classification maps for various applications. Therefore, aiming at exploring the accurate boundary and complex interior texture retrieval in VHR optical remote sensing images, a novel detail injection network (DI-Net) is proposed in this article, which is composed of three aspects. First, the decoupling refinement module embedded with a multiscale representation is designed to improve the feature extraction capabilities that precede the encoding-to-decoding process. Second, we pay attention to the hard examples of boundary and complex interior texture in land cover classification and design two detail injection attention modules to solve the feature inactivation phenomenon in gradually convolutional encoding-to-decoding process. Third, a specific stage grading loss is proposed to adaptively regulate the structural-level weights of the encoding and decoding stages, which facilitates the details retrieval and produce refined land cover classification results. Finally, various datasets [incl. International Society for Photogrammetry and Remote Sensing (ISPRS) and Gaofen Image Dataset (GID)] are employed to demonstrate that the proposed DI-Net achieves better performance than state-of-the-art methods. DI-Net provides more accurate boundaries and more consistent interior textures, and it achieves 86.86% PA and 68.37% mIoU on ISPRS dataset as well as 77.04% PA and 64.38% mIoU on GID dataset, respectively. |
doi_str_mv | 10.1109/JSTARS.2020.3032423 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9234690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9234690</ieee_id><doaj_id>oai_doaj_org_article_3b45110774ce49b3b8a5eea5c0a68793</doaj_id><sourcerecordid>2475959227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-55a8d17ed31e9aed9922416d78527ea29c94d9c2a2ef0e607831328457f288533</originalsourceid><addsrcrecordid>eNo9kctu2zAQRYWgAeqm-YJsCGQtl0-RXKbuIyoMpLCTbokxOTJkyKJLygXy92WiIKshBnPPDO-tqhtGl4xR--XX9vFus11yyulSUMElFxfVgjPFaqaE-lAtmBW2ZpLKj9WnnA-UNlxbsajG9nhK8R8GsoYxkFV5JrIaIOe-6z1MfRxJ7Mif-w15OE2lM5ANHuOEZItj7sc9aY-wx_RMvkIulKdTEXzDCfqBtOMB_Svhd4oewznh5-qygyHj9Vu9qp5-fH9c3dfrh5_t6m5de0nNVCsFJjCNQTC0gMFaziVrgjaKawRuvZXBeg4cO4oN1UYwwY1UuuPGKCGuqnbmhggHd0r9EdKzi9C710ZMewepfGdAJ3ZSFRO1lh6l3YmdAYUIylNoTPGosG5nVjHq7xnz5A7xnMZyvuNSK6vKcbpMiXnKp5hzwu59K6PuJSQ3h-ReQnJvIRXVzazqEfFdYbmQjaXiPxU0jJE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475959227</pqid></control><display><type>article</type><title>Improved Land Cover Classification of VHR Optical Remote Sensing Imagery Based Upon Detail Injection Procedure</title><source>Alma/SFX Local Collection</source><creator>Sang, Qianbo ; Zhuang, Yin ; Dong, Shan ; Wang, Guanqun ; Chen, He ; Li, Lianlin</creator><creatorcontrib>Sang, Qianbo ; Zhuang, Yin ; Dong, Shan ; Wang, Guanqun ; Chen, He ; Li, Lianlin</creatorcontrib><description>Development of very-high-resolution (VHR) remote sensing imaging platforms have resulted in a requirement for developing refined land cover classification maps for various applications. Therefore, aiming at exploring the accurate boundary and complex interior texture retrieval in VHR optical remote sensing images, a novel detail injection network (DI-Net) is proposed in this article, which is composed of three aspects. First, the decoupling refinement module embedded with a multiscale representation is designed to improve the feature extraction capabilities that precede the encoding-to-decoding process. Second, we pay attention to the hard examples of boundary and complex interior texture in land cover classification and design two detail injection attention modules to solve the feature inactivation phenomenon in gradually convolutional encoding-to-decoding process. Third, a specific stage grading loss is proposed to adaptively regulate the structural-level weights of the encoding and decoding stages, which facilitates the details retrieval and produce refined land cover classification results. Finally, various datasets [incl. International Society for Photogrammetry and Remote Sensing (ISPRS) and Gaofen Image Dataset (GID)] are employed to demonstrate that the proposed DI-Net achieves better performance than state-of-the-art methods. DI-Net provides more accurate boundaries and more consistent interior textures, and it achieves 86.86% PA and 68.37% mIoU on ISPRS dataset as well as 77.04% PA and 64.38% mIoU on GID dataset, respectively.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2020.3032423</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Classification ; Convolution ; Datasets ; Decoding ; Decoupling ; Encoding-to-decoding ; Feature extraction ; Image classification ; Image resolution ; Imagery ; Inactivation ; Injection ; Land cover ; land cover classification ; Modules ; Optical imaging ; optical remote sensing ; Optical sensors ; Photogrammetry ; refinement module ; Remote sensing ; Retrieval ; Semantics ; Texture ; unmanned aerial vehicles (UAVs) ; very high resolution (VHR) ; Work platforms</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.18-31</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-55a8d17ed31e9aed9922416d78527ea29c94d9c2a2ef0e607831328457f288533</citedby><cites>FETCH-LOGICAL-c408t-55a8d17ed31e9aed9922416d78527ea29c94d9c2a2ef0e607831328457f288533</cites><orcidid>0000-0002-7850-8766 ; 0000-0002-7737-0144 ; 0000-0002-0443-1081 ; 0000-0003-1894-7449 ; 0000-0002-2295-4425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Sang, Qianbo</creatorcontrib><creatorcontrib>Zhuang, Yin</creatorcontrib><creatorcontrib>Dong, Shan</creatorcontrib><creatorcontrib>Wang, Guanqun</creatorcontrib><creatorcontrib>Chen, He</creatorcontrib><creatorcontrib>Li, Lianlin</creatorcontrib><title>Improved Land Cover Classification of VHR Optical Remote Sensing Imagery Based Upon Detail Injection Procedure</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Development of very-high-resolution (VHR) remote sensing imaging platforms have resulted in a requirement for developing refined land cover classification maps for various applications. Therefore, aiming at exploring the accurate boundary and complex interior texture retrieval in VHR optical remote sensing images, a novel detail injection network (DI-Net) is proposed in this article, which is composed of three aspects. First, the decoupling refinement module embedded with a multiscale representation is designed to improve the feature extraction capabilities that precede the encoding-to-decoding process. Second, we pay attention to the hard examples of boundary and complex interior texture in land cover classification and design two detail injection attention modules to solve the feature inactivation phenomenon in gradually convolutional encoding-to-decoding process. Third, a specific stage grading loss is proposed to adaptively regulate the structural-level weights of the encoding and decoding stages, which facilitates the details retrieval and produce refined land cover classification results. Finally, various datasets [incl. International Society for Photogrammetry and Remote Sensing (ISPRS) and Gaofen Image Dataset (GID)] are employed to demonstrate that the proposed DI-Net achieves better performance than state-of-the-art methods. DI-Net provides more accurate boundaries and more consistent interior textures, and it achieves 86.86% PA and 68.37% mIoU on ISPRS dataset as well as 77.04% PA and 64.38% mIoU on GID dataset, respectively.</description><subject>Classification</subject><subject>Convolution</subject><subject>Datasets</subject><subject>Decoding</subject><subject>Decoupling</subject><subject>Encoding-to-decoding</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>Image resolution</subject><subject>Imagery</subject><subject>Inactivation</subject><subject>Injection</subject><subject>Land cover</subject><subject>land cover classification</subject><subject>Modules</subject><subject>Optical imaging</subject><subject>optical remote sensing</subject><subject>Optical sensors</subject><subject>Photogrammetry</subject><subject>refinement module</subject><subject>Remote sensing</subject><subject>Retrieval</subject><subject>Semantics</subject><subject>Texture</subject><subject>unmanned aerial vehicles (UAVs)</subject><subject>very high resolution (VHR)</subject><subject>Work platforms</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNo9kctu2zAQRYWgAeqm-YJsCGQtl0-RXKbuIyoMpLCTbokxOTJkyKJLygXy92WiIKshBnPPDO-tqhtGl4xR--XX9vFus11yyulSUMElFxfVgjPFaqaE-lAtmBW2ZpLKj9WnnA-UNlxbsajG9nhK8R8GsoYxkFV5JrIaIOe-6z1MfRxJ7Mif-w15OE2lM5ANHuOEZItj7sc9aY-wx_RMvkIulKdTEXzDCfqBtOMB_Svhd4oewznh5-qygyHj9Vu9qp5-fH9c3dfrh5_t6m5de0nNVCsFJjCNQTC0gMFaziVrgjaKawRuvZXBeg4cO4oN1UYwwY1UuuPGKCGuqnbmhggHd0r9EdKzi9C710ZMewepfGdAJ3ZSFRO1lh6l3YmdAYUIylNoTPGosG5nVjHq7xnz5A7xnMZyvuNSK6vKcbpMiXnKp5hzwu59K6PuJSQ3h-ReQnJvIRXVzazqEfFdYbmQjaXiPxU0jJE</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Sang, Qianbo</creator><creator>Zhuang, Yin</creator><creator>Dong, Shan</creator><creator>Wang, Guanqun</creator><creator>Chen, He</creator><creator>Li, Lianlin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7850-8766</orcidid><orcidid>https://orcid.org/0000-0002-7737-0144</orcidid><orcidid>https://orcid.org/0000-0002-0443-1081</orcidid><orcidid>https://orcid.org/0000-0003-1894-7449</orcidid><orcidid>https://orcid.org/0000-0002-2295-4425</orcidid></search><sort><creationdate>2021</creationdate><title>Improved Land Cover Classification of VHR Optical Remote Sensing Imagery Based Upon Detail Injection Procedure</title><author>Sang, Qianbo ; Zhuang, Yin ; Dong, Shan ; Wang, Guanqun ; Chen, He ; Li, Lianlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-55a8d17ed31e9aed9922416d78527ea29c94d9c2a2ef0e607831328457f288533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classification</topic><topic>Convolution</topic><topic>Datasets</topic><topic>Decoding</topic><topic>Decoupling</topic><topic>Encoding-to-decoding</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>Image resolution</topic><topic>Imagery</topic><topic>Inactivation</topic><topic>Injection</topic><topic>Land cover</topic><topic>land cover classification</topic><topic>Modules</topic><topic>Optical imaging</topic><topic>optical remote sensing</topic><topic>Optical sensors</topic><topic>Photogrammetry</topic><topic>refinement module</topic><topic>Remote sensing</topic><topic>Retrieval</topic><topic>Semantics</topic><topic>Texture</topic><topic>unmanned aerial vehicles (UAVs)</topic><topic>very high resolution (VHR)</topic><topic>Work platforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sang, Qianbo</creatorcontrib><creatorcontrib>Zhuang, Yin</creatorcontrib><creatorcontrib>Dong, Shan</creatorcontrib><creatorcontrib>Wang, Guanqun</creatorcontrib><creatorcontrib>Chen, He</creatorcontrib><creatorcontrib>Li, Lianlin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sang, Qianbo</au><au>Zhuang, Yin</au><au>Dong, Shan</au><au>Wang, Guanqun</au><au>Chen, He</au><au>Li, Lianlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Land Cover Classification of VHR Optical Remote Sensing Imagery Based Upon Detail Injection Procedure</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2021</date><risdate>2021</risdate><volume>14</volume><spage>18</spage><epage>31</epage><pages>18-31</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Development of very-high-resolution (VHR) remote sensing imaging platforms have resulted in a requirement for developing refined land cover classification maps for various applications. Therefore, aiming at exploring the accurate boundary and complex interior texture retrieval in VHR optical remote sensing images, a novel detail injection network (DI-Net) is proposed in this article, which is composed of three aspects. First, the decoupling refinement module embedded with a multiscale representation is designed to improve the feature extraction capabilities that precede the encoding-to-decoding process. Second, we pay attention to the hard examples of boundary and complex interior texture in land cover classification and design two detail injection attention modules to solve the feature inactivation phenomenon in gradually convolutional encoding-to-decoding process. Third, a specific stage grading loss is proposed to adaptively regulate the structural-level weights of the encoding and decoding stages, which facilitates the details retrieval and produce refined land cover classification results. Finally, various datasets [incl. International Society for Photogrammetry and Remote Sensing (ISPRS) and Gaofen Image Dataset (GID)] are employed to demonstrate that the proposed DI-Net achieves better performance than state-of-the-art methods. DI-Net provides more accurate boundaries and more consistent interior textures, and it achieves 86.86% PA and 68.37% mIoU on ISPRS dataset as well as 77.04% PA and 64.38% mIoU on GID dataset, respectively.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2020.3032423</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7850-8766</orcidid><orcidid>https://orcid.org/0000-0002-7737-0144</orcidid><orcidid>https://orcid.org/0000-0002-0443-1081</orcidid><orcidid>https://orcid.org/0000-0003-1894-7449</orcidid><orcidid>https://orcid.org/0000-0002-2295-4425</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.18-31 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_ieee_primary_9234690 |
source | Alma/SFX Local Collection |
subjects | Classification Convolution Datasets Decoding Decoupling Encoding-to-decoding Feature extraction Image classification Image resolution Imagery Inactivation Injection Land cover land cover classification Modules Optical imaging optical remote sensing Optical sensors Photogrammetry refinement module Remote sensing Retrieval Semantics Texture unmanned aerial vehicles (UAVs) very high resolution (VHR) Work platforms |
title | Improved Land Cover Classification of VHR Optical Remote Sensing Imagery Based Upon Detail Injection Procedure |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A17%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Land%20Cover%20Classification%20of%20VHR%20Optical%20Remote%20Sensing%20Imagery%20Based%20Upon%20Detail%20Injection%20Procedure&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Sang,%20Qianbo&rft.date=2021&rft.volume=14&rft.spage=18&rft.epage=31&rft.pages=18-31&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2020.3032423&rft_dat=%3Cproquest_ieee_%3E2475959227%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-55a8d17ed31e9aed9922416d78527ea29c94d9c2a2ef0e607831328457f288533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2475959227&rft_id=info:pmid/&rft_ieee_id=9234690&rfr_iscdi=true |