Loading…

Q-Learning-Based Smart Selective Harmonic Current Mitigation-PWM (S2HCM-PWM) for Grid-Connected Converters

Multilevel converters become more and more interesting for renewable energies and energy storage systems. Various modulation techniques such as high-frequency modulation approaches (e.g., space vector modulation and phase shift-PWM) and low-frequency modulation approaches (e.g. selective harmonic cu...

Full description

Saved in:
Bibliographic Details
Main Authors: Moeini, Amirhossein, Dabbaghjamanesh, Morteza, Kimball, Jonathan W.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5075
container_issue
container_start_page 5068
container_title
container_volume
creator Moeini, Amirhossein
Dabbaghjamanesh, Morteza
Kimball, Jonathan W.
description Multilevel converters become more and more interesting for renewable energies and energy storage systems. Various modulation techniques such as high-frequency modulation approaches (e.g., space vector modulation and phase shift-PWM) and low-frequency modulation approaches (e.g. selective harmonic current mitigation-PWM (SHCM-PWM), selective harmonic mitigation-PWM (SHM-PWM), and selective harmonic elimination-PWM (SHE-PWM)) are employed for multilevel grid connected converters in the literature. High efficiency (low switching losses) can be achieved by using the low-frequency modulation approaches. However, low-frequency modulation techniques significantly increase the coupling inductance (passive filter). High-switching frequency modulation techniques have a better dynamic response and use a smaller passive filter. In this paper, a machine learning technique (Q-learning) is used to have advantages of both high- and low-frequency modulation approaches. The proposed smart modulation technique meets all current harmonic requirements, while the switching frequency of the converter is not significantly increased. To evaluate the effectiveness of the proposed technique, simulations are conducted on a 7-level (3-cell) single-phase cascaded H-bridge converter.
doi_str_mv 10.1109/ECCE44975.2020.9236369
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9236369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9236369</ieee_id><sourcerecordid>9236369</sourcerecordid><originalsourceid>FETCH-LOGICAL-i184t-998e3bbc46e3ddeff1ff768a326554b949048278e82089af65e18300dec2caf63</originalsourceid><addsrcrecordid>eNotkE1LAzEYhKMgWGt_gSA56iE1X5tNjhrWVmhRWcVjSXfflJQ2K9m04L93xZ7mmcMMzCB0y-iUMWoeKmsrKU1ZTDnldGq4UEKZM3TFSq5ZobkqztGIC26IKKW-RJO-31JKmdJcUzZC23eyAJdiiBvy5Hpocb13KeMadtDkcAQ8d2nfxdBge0gJYsbLkMPG5dBF8va1xHc1n9vlH95j3yU8S6EltotxyA91Ax0hZUj9NbrwbtfD5KRj9Plcfdg5WbzOXuzjggSmZSbGaBDrdSMViLYF75n3pdJODFsKuTbSUKl5qUFzqo3zqgCmBaUtNLwZrBijm__eAACr7xSGQT-r0zXiFx7QWBE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Q-Learning-Based Smart Selective Harmonic Current Mitigation-PWM (S2HCM-PWM) for Grid-Connected Converters</title><source>IEEE Xplore All Conference Series</source><creator>Moeini, Amirhossein ; Dabbaghjamanesh, Morteza ; Kimball, Jonathan W.</creator><creatorcontrib>Moeini, Amirhossein ; Dabbaghjamanesh, Morteza ; Kimball, Jonathan W.</creatorcontrib><description>Multilevel converters become more and more interesting for renewable energies and energy storage systems. Various modulation techniques such as high-frequency modulation approaches (e.g., space vector modulation and phase shift-PWM) and low-frequency modulation approaches (e.g. selective harmonic current mitigation-PWM (SHCM-PWM), selective harmonic mitigation-PWM (SHM-PWM), and selective harmonic elimination-PWM (SHE-PWM)) are employed for multilevel grid connected converters in the literature. High efficiency (low switching losses) can be achieved by using the low-frequency modulation approaches. However, low-frequency modulation techniques significantly increase the coupling inductance (passive filter). High-switching frequency modulation techniques have a better dynamic response and use a smaller passive filter. In this paper, a machine learning technique (Q-learning) is used to have advantages of both high- and low-frequency modulation approaches. The proposed smart modulation technique meets all current harmonic requirements, while the switching frequency of the converter is not significantly increased. To evaluate the effectiveness of the proposed technique, simulations are conducted on a 7-level (3-cell) single-phase cascaded H-bridge converter.</description><identifier>EISSN: 2329-3748</identifier><identifier>EISBN: 1728158265</identifier><identifier>EISBN: 9781728158266</identifier><identifier>DOI: 10.1109/ECCE44975.2020.9236369</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cascaded H-bridge ; Frequency modulation ; grid-tied converters ; Harmonic analysis ; Mathematical model ; Phase modulation ; Power system harmonics ; Q-learning ; smart selective harmonic current mitigation-PWM ; Switches</subject><ispartof>2020 IEEE Energy Conversion Congress and Exposition (ECCE), 2020, p.5068-5075</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9236369$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9236369$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Moeini, Amirhossein</creatorcontrib><creatorcontrib>Dabbaghjamanesh, Morteza</creatorcontrib><creatorcontrib>Kimball, Jonathan W.</creatorcontrib><title>Q-Learning-Based Smart Selective Harmonic Current Mitigation-PWM (S2HCM-PWM) for Grid-Connected Converters</title><title>2020 IEEE Energy Conversion Congress and Exposition (ECCE)</title><addtitle>ECCE</addtitle><description>Multilevel converters become more and more interesting for renewable energies and energy storage systems. Various modulation techniques such as high-frequency modulation approaches (e.g., space vector modulation and phase shift-PWM) and low-frequency modulation approaches (e.g. selective harmonic current mitigation-PWM (SHCM-PWM), selective harmonic mitigation-PWM (SHM-PWM), and selective harmonic elimination-PWM (SHE-PWM)) are employed for multilevel grid connected converters in the literature. High efficiency (low switching losses) can be achieved by using the low-frequency modulation approaches. However, low-frequency modulation techniques significantly increase the coupling inductance (passive filter). High-switching frequency modulation techniques have a better dynamic response and use a smaller passive filter. In this paper, a machine learning technique (Q-learning) is used to have advantages of both high- and low-frequency modulation approaches. The proposed smart modulation technique meets all current harmonic requirements, while the switching frequency of the converter is not significantly increased. To evaluate the effectiveness of the proposed technique, simulations are conducted on a 7-level (3-cell) single-phase cascaded H-bridge converter.</description><subject>Cascaded H-bridge</subject><subject>Frequency modulation</subject><subject>grid-tied converters</subject><subject>Harmonic analysis</subject><subject>Mathematical model</subject><subject>Phase modulation</subject><subject>Power system harmonics</subject><subject>Q-learning</subject><subject>smart selective harmonic current mitigation-PWM</subject><subject>Switches</subject><issn>2329-3748</issn><isbn>1728158265</isbn><isbn>9781728158266</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkE1LAzEYhKMgWGt_gSA56iE1X5tNjhrWVmhRWcVjSXfflJQ2K9m04L93xZ7mmcMMzCB0y-iUMWoeKmsrKU1ZTDnldGq4UEKZM3TFSq5ZobkqztGIC26IKKW-RJO-31JKmdJcUzZC23eyAJdiiBvy5Hpocb13KeMadtDkcAQ8d2nfxdBge0gJYsbLkMPG5dBF8va1xHc1n9vlH95j3yU8S6EltotxyA91Ax0hZUj9NbrwbtfD5KRj9Plcfdg5WbzOXuzjggSmZSbGaBDrdSMViLYF75n3pdJODFsKuTbSUKl5qUFzqo3zqgCmBaUtNLwZrBijm__eAACr7xSGQT-r0zXiFx7QWBE</recordid><startdate>20201011</startdate><enddate>20201011</enddate><creator>Moeini, Amirhossein</creator><creator>Dabbaghjamanesh, Morteza</creator><creator>Kimball, Jonathan W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20201011</creationdate><title>Q-Learning-Based Smart Selective Harmonic Current Mitigation-PWM (S2HCM-PWM) for Grid-Connected Converters</title><author>Moeini, Amirhossein ; Dabbaghjamanesh, Morteza ; Kimball, Jonathan W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i184t-998e3bbc46e3ddeff1ff768a326554b949048278e82089af65e18300dec2caf63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cascaded H-bridge</topic><topic>Frequency modulation</topic><topic>grid-tied converters</topic><topic>Harmonic analysis</topic><topic>Mathematical model</topic><topic>Phase modulation</topic><topic>Power system harmonics</topic><topic>Q-learning</topic><topic>smart selective harmonic current mitigation-PWM</topic><topic>Switches</topic><toplevel>online_resources</toplevel><creatorcontrib>Moeini, Amirhossein</creatorcontrib><creatorcontrib>Dabbaghjamanesh, Morteza</creatorcontrib><creatorcontrib>Kimball, Jonathan W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Moeini, Amirhossein</au><au>Dabbaghjamanesh, Morteza</au><au>Kimball, Jonathan W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Q-Learning-Based Smart Selective Harmonic Current Mitigation-PWM (S2HCM-PWM) for Grid-Connected Converters</atitle><btitle>2020 IEEE Energy Conversion Congress and Exposition (ECCE)</btitle><stitle>ECCE</stitle><date>2020-10-11</date><risdate>2020</risdate><spage>5068</spage><epage>5075</epage><pages>5068-5075</pages><eissn>2329-3748</eissn><eisbn>1728158265</eisbn><eisbn>9781728158266</eisbn><abstract>Multilevel converters become more and more interesting for renewable energies and energy storage systems. Various modulation techniques such as high-frequency modulation approaches (e.g., space vector modulation and phase shift-PWM) and low-frequency modulation approaches (e.g. selective harmonic current mitigation-PWM (SHCM-PWM), selective harmonic mitigation-PWM (SHM-PWM), and selective harmonic elimination-PWM (SHE-PWM)) are employed for multilevel grid connected converters in the literature. High efficiency (low switching losses) can be achieved by using the low-frequency modulation approaches. However, low-frequency modulation techniques significantly increase the coupling inductance (passive filter). High-switching frequency modulation techniques have a better dynamic response and use a smaller passive filter. In this paper, a machine learning technique (Q-learning) is used to have advantages of both high- and low-frequency modulation approaches. The proposed smart modulation technique meets all current harmonic requirements, while the switching frequency of the converter is not significantly increased. To evaluate the effectiveness of the proposed technique, simulations are conducted on a 7-level (3-cell) single-phase cascaded H-bridge converter.</abstract><pub>IEEE</pub><doi>10.1109/ECCE44975.2020.9236369</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2329-3748
ispartof 2020 IEEE Energy Conversion Congress and Exposition (ECCE), 2020, p.5068-5075
issn 2329-3748
language eng
recordid cdi_ieee_primary_9236369
source IEEE Xplore All Conference Series
subjects Cascaded H-bridge
Frequency modulation
grid-tied converters
Harmonic analysis
Mathematical model
Phase modulation
Power system harmonics
Q-learning
smart selective harmonic current mitigation-PWM
Switches
title Q-Learning-Based Smart Selective Harmonic Current Mitigation-PWM (S2HCM-PWM) for Grid-Connected Converters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A42%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Q-Learning-Based%20Smart%20Selective%20Harmonic%20Current%20Mitigation-PWM%20(S2HCM-PWM)%20for%20Grid-Connected%20Converters&rft.btitle=2020%20IEEE%20Energy%20Conversion%20Congress%20and%20Exposition%20(ECCE)&rft.au=Moeini,%20Amirhossein&rft.date=2020-10-11&rft.spage=5068&rft.epage=5075&rft.pages=5068-5075&rft.eissn=2329-3748&rft_id=info:doi/10.1109/ECCE44975.2020.9236369&rft.eisbn=1728158265&rft.eisbn_list=9781728158266&rft_dat=%3Cieee_CHZPO%3E9236369%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i184t-998e3bbc46e3ddeff1ff768a326554b949048278e82089af65e18300dec2caf63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9236369&rfr_iscdi=true