Loading…
Q-Learning-Based Smart Selective Harmonic Current Mitigation-PWM (S2HCM-PWM) for Grid-Connected Converters
Multilevel converters become more and more interesting for renewable energies and energy storage systems. Various modulation techniques such as high-frequency modulation approaches (e.g., space vector modulation and phase shift-PWM) and low-frequency modulation approaches (e.g. selective harmonic cu...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5075 |
container_issue | |
container_start_page | 5068 |
container_title | |
container_volume | |
creator | Moeini, Amirhossein Dabbaghjamanesh, Morteza Kimball, Jonathan W. |
description | Multilevel converters become more and more interesting for renewable energies and energy storage systems. Various modulation techniques such as high-frequency modulation approaches (e.g., space vector modulation and phase shift-PWM) and low-frequency modulation approaches (e.g. selective harmonic current mitigation-PWM (SHCM-PWM), selective harmonic mitigation-PWM (SHM-PWM), and selective harmonic elimination-PWM (SHE-PWM)) are employed for multilevel grid connected converters in the literature. High efficiency (low switching losses) can be achieved by using the low-frequency modulation approaches. However, low-frequency modulation techniques significantly increase the coupling inductance (passive filter). High-switching frequency modulation techniques have a better dynamic response and use a smaller passive filter. In this paper, a machine learning technique (Q-learning) is used to have advantages of both high- and low-frequency modulation approaches. The proposed smart modulation technique meets all current harmonic requirements, while the switching frequency of the converter is not significantly increased. To evaluate the effectiveness of the proposed technique, simulations are conducted on a 7-level (3-cell) single-phase cascaded H-bridge converter. |
doi_str_mv | 10.1109/ECCE44975.2020.9236369 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9236369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9236369</ieee_id><sourcerecordid>9236369</sourcerecordid><originalsourceid>FETCH-LOGICAL-i184t-998e3bbc46e3ddeff1ff768a326554b949048278e82089af65e18300dec2caf63</originalsourceid><addsrcrecordid>eNotkE1LAzEYhKMgWGt_gSA56iE1X5tNjhrWVmhRWcVjSXfflJQ2K9m04L93xZ7mmcMMzCB0y-iUMWoeKmsrKU1ZTDnldGq4UEKZM3TFSq5ZobkqztGIC26IKKW-RJO-31JKmdJcUzZC23eyAJdiiBvy5Hpocb13KeMadtDkcAQ8d2nfxdBge0gJYsbLkMPG5dBF8va1xHc1n9vlH95j3yU8S6EltotxyA91Ax0hZUj9NbrwbtfD5KRj9Plcfdg5WbzOXuzjggSmZSbGaBDrdSMViLYF75n3pdJODFsKuTbSUKl5qUFzqo3zqgCmBaUtNLwZrBijm__eAACr7xSGQT-r0zXiFx7QWBE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Q-Learning-Based Smart Selective Harmonic Current Mitigation-PWM (S2HCM-PWM) for Grid-Connected Converters</title><source>IEEE Xplore All Conference Series</source><creator>Moeini, Amirhossein ; Dabbaghjamanesh, Morteza ; Kimball, Jonathan W.</creator><creatorcontrib>Moeini, Amirhossein ; Dabbaghjamanesh, Morteza ; Kimball, Jonathan W.</creatorcontrib><description>Multilevel converters become more and more interesting for renewable energies and energy storage systems. Various modulation techniques such as high-frequency modulation approaches (e.g., space vector modulation and phase shift-PWM) and low-frequency modulation approaches (e.g. selective harmonic current mitigation-PWM (SHCM-PWM), selective harmonic mitigation-PWM (SHM-PWM), and selective harmonic elimination-PWM (SHE-PWM)) are employed for multilevel grid connected converters in the literature. High efficiency (low switching losses) can be achieved by using the low-frequency modulation approaches. However, low-frequency modulation techniques significantly increase the coupling inductance (passive filter). High-switching frequency modulation techniques have a better dynamic response and use a smaller passive filter. In this paper, a machine learning technique (Q-learning) is used to have advantages of both high- and low-frequency modulation approaches. The proposed smart modulation technique meets all current harmonic requirements, while the switching frequency of the converter is not significantly increased. To evaluate the effectiveness of the proposed technique, simulations are conducted on a 7-level (3-cell) single-phase cascaded H-bridge converter.</description><identifier>EISSN: 2329-3748</identifier><identifier>EISBN: 1728158265</identifier><identifier>EISBN: 9781728158266</identifier><identifier>DOI: 10.1109/ECCE44975.2020.9236369</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cascaded H-bridge ; Frequency modulation ; grid-tied converters ; Harmonic analysis ; Mathematical model ; Phase modulation ; Power system harmonics ; Q-learning ; smart selective harmonic current mitigation-PWM ; Switches</subject><ispartof>2020 IEEE Energy Conversion Congress and Exposition (ECCE), 2020, p.5068-5075</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9236369$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9236369$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Moeini, Amirhossein</creatorcontrib><creatorcontrib>Dabbaghjamanesh, Morteza</creatorcontrib><creatorcontrib>Kimball, Jonathan W.</creatorcontrib><title>Q-Learning-Based Smart Selective Harmonic Current Mitigation-PWM (S2HCM-PWM) for Grid-Connected Converters</title><title>2020 IEEE Energy Conversion Congress and Exposition (ECCE)</title><addtitle>ECCE</addtitle><description>Multilevel converters become more and more interesting for renewable energies and energy storage systems. Various modulation techniques such as high-frequency modulation approaches (e.g., space vector modulation and phase shift-PWM) and low-frequency modulation approaches (e.g. selective harmonic current mitigation-PWM (SHCM-PWM), selective harmonic mitigation-PWM (SHM-PWM), and selective harmonic elimination-PWM (SHE-PWM)) are employed for multilevel grid connected converters in the literature. High efficiency (low switching losses) can be achieved by using the low-frequency modulation approaches. However, low-frequency modulation techniques significantly increase the coupling inductance (passive filter). High-switching frequency modulation techniques have a better dynamic response and use a smaller passive filter. In this paper, a machine learning technique (Q-learning) is used to have advantages of both high- and low-frequency modulation approaches. The proposed smart modulation technique meets all current harmonic requirements, while the switching frequency of the converter is not significantly increased. To evaluate the effectiveness of the proposed technique, simulations are conducted on a 7-level (3-cell) single-phase cascaded H-bridge converter.</description><subject>Cascaded H-bridge</subject><subject>Frequency modulation</subject><subject>grid-tied converters</subject><subject>Harmonic analysis</subject><subject>Mathematical model</subject><subject>Phase modulation</subject><subject>Power system harmonics</subject><subject>Q-learning</subject><subject>smart selective harmonic current mitigation-PWM</subject><subject>Switches</subject><issn>2329-3748</issn><isbn>1728158265</isbn><isbn>9781728158266</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkE1LAzEYhKMgWGt_gSA56iE1X5tNjhrWVmhRWcVjSXfflJQ2K9m04L93xZ7mmcMMzCB0y-iUMWoeKmsrKU1ZTDnldGq4UEKZM3TFSq5ZobkqztGIC26IKKW-RJO-31JKmdJcUzZC23eyAJdiiBvy5Hpocb13KeMadtDkcAQ8d2nfxdBge0gJYsbLkMPG5dBF8va1xHc1n9vlH95j3yU8S6EltotxyA91Ax0hZUj9NbrwbtfD5KRj9Plcfdg5WbzOXuzjggSmZSbGaBDrdSMViLYF75n3pdJODFsKuTbSUKl5qUFzqo3zqgCmBaUtNLwZrBijm__eAACr7xSGQT-r0zXiFx7QWBE</recordid><startdate>20201011</startdate><enddate>20201011</enddate><creator>Moeini, Amirhossein</creator><creator>Dabbaghjamanesh, Morteza</creator><creator>Kimball, Jonathan W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20201011</creationdate><title>Q-Learning-Based Smart Selective Harmonic Current Mitigation-PWM (S2HCM-PWM) for Grid-Connected Converters</title><author>Moeini, Amirhossein ; Dabbaghjamanesh, Morteza ; Kimball, Jonathan W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i184t-998e3bbc46e3ddeff1ff768a326554b949048278e82089af65e18300dec2caf63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cascaded H-bridge</topic><topic>Frequency modulation</topic><topic>grid-tied converters</topic><topic>Harmonic analysis</topic><topic>Mathematical model</topic><topic>Phase modulation</topic><topic>Power system harmonics</topic><topic>Q-learning</topic><topic>smart selective harmonic current mitigation-PWM</topic><topic>Switches</topic><toplevel>online_resources</toplevel><creatorcontrib>Moeini, Amirhossein</creatorcontrib><creatorcontrib>Dabbaghjamanesh, Morteza</creatorcontrib><creatorcontrib>Kimball, Jonathan W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Moeini, Amirhossein</au><au>Dabbaghjamanesh, Morteza</au><au>Kimball, Jonathan W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Q-Learning-Based Smart Selective Harmonic Current Mitigation-PWM (S2HCM-PWM) for Grid-Connected Converters</atitle><btitle>2020 IEEE Energy Conversion Congress and Exposition (ECCE)</btitle><stitle>ECCE</stitle><date>2020-10-11</date><risdate>2020</risdate><spage>5068</spage><epage>5075</epage><pages>5068-5075</pages><eissn>2329-3748</eissn><eisbn>1728158265</eisbn><eisbn>9781728158266</eisbn><abstract>Multilevel converters become more and more interesting for renewable energies and energy storage systems. Various modulation techniques such as high-frequency modulation approaches (e.g., space vector modulation and phase shift-PWM) and low-frequency modulation approaches (e.g. selective harmonic current mitigation-PWM (SHCM-PWM), selective harmonic mitigation-PWM (SHM-PWM), and selective harmonic elimination-PWM (SHE-PWM)) are employed for multilevel grid connected converters in the literature. High efficiency (low switching losses) can be achieved by using the low-frequency modulation approaches. However, low-frequency modulation techniques significantly increase the coupling inductance (passive filter). High-switching frequency modulation techniques have a better dynamic response and use a smaller passive filter. In this paper, a machine learning technique (Q-learning) is used to have advantages of both high- and low-frequency modulation approaches. The proposed smart modulation technique meets all current harmonic requirements, while the switching frequency of the converter is not significantly increased. To evaluate the effectiveness of the proposed technique, simulations are conducted on a 7-level (3-cell) single-phase cascaded H-bridge converter.</abstract><pub>IEEE</pub><doi>10.1109/ECCE44975.2020.9236369</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2329-3748 |
ispartof | 2020 IEEE Energy Conversion Congress and Exposition (ECCE), 2020, p.5068-5075 |
issn | 2329-3748 |
language | eng |
recordid | cdi_ieee_primary_9236369 |
source | IEEE Xplore All Conference Series |
subjects | Cascaded H-bridge Frequency modulation grid-tied converters Harmonic analysis Mathematical model Phase modulation Power system harmonics Q-learning smart selective harmonic current mitigation-PWM Switches |
title | Q-Learning-Based Smart Selective Harmonic Current Mitigation-PWM (S2HCM-PWM) for Grid-Connected Converters |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A42%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Q-Learning-Based%20Smart%20Selective%20Harmonic%20Current%20Mitigation-PWM%20(S2HCM-PWM)%20for%20Grid-Connected%20Converters&rft.btitle=2020%20IEEE%20Energy%20Conversion%20Congress%20and%20Exposition%20(ECCE)&rft.au=Moeini,%20Amirhossein&rft.date=2020-10-11&rft.spage=5068&rft.epage=5075&rft.pages=5068-5075&rft.eissn=2329-3748&rft_id=info:doi/10.1109/ECCE44975.2020.9236369&rft.eisbn=1728158265&rft.eisbn_list=9781728158266&rft_dat=%3Cieee_CHZPO%3E9236369%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i184t-998e3bbc46e3ddeff1ff768a326554b949048278e82089af65e18300dec2caf63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9236369&rfr_iscdi=true |