Loading…

A Voting Approach for Adaptive Network-on-Chip Power-Gating

Scalable Networks-on-Chip (NoCs) have become the standard interconnection mechanisms in large-scale multicore architectures. These NoCs consume a large fraction of the on-chip power budget, where the static portion is becoming dominant as technology scales down to sub-10nm node. Therefore, it is ess...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on computers 2021-11, Vol.70 (11), p.1962-1975
Main Authors: Huang, Jiayi, Bhosekar, Shilpa, Boyapati, Rahul, Wang, Ningyuan, Hur, Byul, Yum, Ki Hwan, Kim, Eun Jung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c330t-71202717c5dcbc03e10441ef3f1b74f357947d79eb1e739bf10630237b6c36c13
cites cdi_FETCH-LOGICAL-c330t-71202717c5dcbc03e10441ef3f1b74f357947d79eb1e739bf10630237b6c36c13
container_end_page 1975
container_issue 11
container_start_page 1962
container_title IEEE transactions on computers
container_volume 70
creator Huang, Jiayi
Bhosekar, Shilpa
Boyapati, Rahul
Wang, Ningyuan
Hur, Byul
Yum, Ki Hwan
Kim, Eun Jung
description Scalable Networks-on-Chip (NoCs) have become the standard interconnection mechanisms in large-scale multicore architectures. These NoCs consume a large fraction of the on-chip power budget, where the static portion is becoming dominant as technology scales down to sub-10nm node. Therefore, it is essential to reduce static power so as to achieve power- and energy-efficient computing. Power-Gating as an effective static power saving technique can be used to power off inactive routers for static power saving. However, packet deliveries in irregular power-gated networks suffer from detour or waiting time overhead to either route around or wake up power-gated routers. In this article, we propose Fly-Over ( Flov ) , a voting approach for dynamic router power-gating in a light-weight and distributed manner, which includes Flov router microarchitecture, adaptive power-gating policy, and low-latency dynamic routing algorithms. We evaluate Flov using synthetic workloads as well as real workloads from PARSEC 2.1 benchmark suite. Our full-system evaluations show that Flov reduces the power consumption of NoC by 31 and 20 percent, respectively, on average across several benchmarks, compared to the baseline and the state-of-the-art while maintaining the similar performance.
doi_str_mv 10.1109/TC.2020.3033163
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9237098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9237098</ieee_id><sourcerecordid>2580098689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-71202717c5dcbc03e10441ef3f1b74f357947d79eb1e739bf10630237b6c36c13</originalsourceid><addsrcrecordid>eNo9kDFPwzAUhC0EEqUwM7BEYnb7Xl5ix2KKIihICBgKq5W4Nk2BOjgpFf8eV62Ybrnv7nSMXSJMEEFN59UkhRQmBEQo6IiNMM8lVyoXx2wEgAVXlMEpO-v7FQCIFNSI3ZTJmx_a9XtSdl3wtVkmzoekXNTd0P7Y5MkOWx8-uF_zatl2yYvf2sBn9Q45Zyeu_uztxUHH7PXudl7d88fn2UNVPnJDBAOXGHdJlCZfmMYAWYQsQ-vIYSMzR7lUmVxIZRu0klTjEARBSrIRhoRBGrPrfW4c-L2x_aBXfhPWsVKneQGgClGo6JruXSb4vg_W6S60X3X41Qh695CeV3r3kD48FImrPdFaa__dKjbHSPoDMy9evA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580098689</pqid></control><display><type>article</type><title>A Voting Approach for Adaptive Network-on-Chip Power-Gating</title><source>IEEE Xplore (Online service)</source><creator>Huang, Jiayi ; Bhosekar, Shilpa ; Boyapati, Rahul ; Wang, Ningyuan ; Hur, Byul ; Yum, Ki Hwan ; Kim, Eun Jung</creator><creatorcontrib>Huang, Jiayi ; Bhosekar, Shilpa ; Boyapati, Rahul ; Wang, Ningyuan ; Hur, Byul ; Yum, Ki Hwan ; Kim, Eun Jung</creatorcontrib><description>Scalable Networks-on-Chip (NoCs) have become the standard interconnection mechanisms in large-scale multicore architectures. These NoCs consume a large fraction of the on-chip power budget, where the static portion is becoming dominant as technology scales down to sub-10nm node. Therefore, it is essential to reduce static power so as to achieve power- and energy-efficient computing. Power-Gating as an effective static power saving technique can be used to power off inactive routers for static power saving. However, packet deliveries in irregular power-gated networks suffer from detour or waiting time overhead to either route around or wake up power-gated routers. In this article, we propose Fly-Over ( Flov ) , a voting approach for dynamic router power-gating in a light-weight and distributed manner, which includes Flov router microarchitecture, adaptive power-gating policy, and low-latency dynamic routing algorithms. We evaluate Flov using synthetic workloads as well as real workloads from PARSEC 2.1 benchmark suite. Our full-system evaluations show that Flov reduces the power consumption of NoC by 31 and 20 percent, respectively, on average across several benchmarks, compared to the baseline and the state-of-the-art while maintaining the similar performance.</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/TC.2020.3033163</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Benchmarks ; Computer architecture ; Heuristic algorithms ; Microarchitecture ; Network interfaces ; Network latency ; Networks-on-chip ; Power consumption ; Power demand ; power-gating ; Routers ; Routing ; routing algorithm ; Routing protocols ; System on chip ; Voting ; Weight reduction ; Workload ; Workloads</subject><ispartof>IEEE transactions on computers, 2021-11, Vol.70 (11), p.1962-1975</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-71202717c5dcbc03e10441ef3f1b74f357947d79eb1e739bf10630237b6c36c13</citedby><cites>FETCH-LOGICAL-c330t-71202717c5dcbc03e10441ef3f1b74f357947d79eb1e739bf10630237b6c36c13</cites><orcidid>0000-0003-4011-6668 ; 0000-0003-1094-485X ; 0000-0002-3130-1434</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9237098$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids></links><search><creatorcontrib>Huang, Jiayi</creatorcontrib><creatorcontrib>Bhosekar, Shilpa</creatorcontrib><creatorcontrib>Boyapati, Rahul</creatorcontrib><creatorcontrib>Wang, Ningyuan</creatorcontrib><creatorcontrib>Hur, Byul</creatorcontrib><creatorcontrib>Yum, Ki Hwan</creatorcontrib><creatorcontrib>Kim, Eun Jung</creatorcontrib><title>A Voting Approach for Adaptive Network-on-Chip Power-Gating</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>Scalable Networks-on-Chip (NoCs) have become the standard interconnection mechanisms in large-scale multicore architectures. These NoCs consume a large fraction of the on-chip power budget, where the static portion is becoming dominant as technology scales down to sub-10nm node. Therefore, it is essential to reduce static power so as to achieve power- and energy-efficient computing. Power-Gating as an effective static power saving technique can be used to power off inactive routers for static power saving. However, packet deliveries in irregular power-gated networks suffer from detour or waiting time overhead to either route around or wake up power-gated routers. In this article, we propose Fly-Over ( Flov ) , a voting approach for dynamic router power-gating in a light-weight and distributed manner, which includes Flov router microarchitecture, adaptive power-gating policy, and low-latency dynamic routing algorithms. We evaluate Flov using synthetic workloads as well as real workloads from PARSEC 2.1 benchmark suite. Our full-system evaluations show that Flov reduces the power consumption of NoC by 31 and 20 percent, respectively, on average across several benchmarks, compared to the baseline and the state-of-the-art while maintaining the similar performance.</description><subject>Algorithms</subject><subject>Benchmarks</subject><subject>Computer architecture</subject><subject>Heuristic algorithms</subject><subject>Microarchitecture</subject><subject>Network interfaces</subject><subject>Network latency</subject><subject>Networks-on-chip</subject><subject>Power consumption</subject><subject>Power demand</subject><subject>power-gating</subject><subject>Routers</subject><subject>Routing</subject><subject>routing algorithm</subject><subject>Routing protocols</subject><subject>System on chip</subject><subject>Voting</subject><subject>Weight reduction</subject><subject>Workload</subject><subject>Workloads</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAUhC0EEqUwM7BEYnb7Xl5ix2KKIihICBgKq5W4Nk2BOjgpFf8eV62Ybrnv7nSMXSJMEEFN59UkhRQmBEQo6IiNMM8lVyoXx2wEgAVXlMEpO-v7FQCIFNSI3ZTJmx_a9XtSdl3wtVkmzoekXNTd0P7Y5MkOWx8-uF_zatl2yYvf2sBn9Q45Zyeu_uztxUHH7PXudl7d88fn2UNVPnJDBAOXGHdJlCZfmMYAWYQsQ-vIYSMzR7lUmVxIZRu0klTjEARBSrIRhoRBGrPrfW4c-L2x_aBXfhPWsVKneQGgClGo6JruXSb4vg_W6S60X3X41Qh695CeV3r3kD48FImrPdFaa__dKjbHSPoDMy9evA</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Huang, Jiayi</creator><creator>Bhosekar, Shilpa</creator><creator>Boyapati, Rahul</creator><creator>Wang, Ningyuan</creator><creator>Hur, Byul</creator><creator>Yum, Ki Hwan</creator><creator>Kim, Eun Jung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4011-6668</orcidid><orcidid>https://orcid.org/0000-0003-1094-485X</orcidid><orcidid>https://orcid.org/0000-0002-3130-1434</orcidid></search><sort><creationdate>20211101</creationdate><title>A Voting Approach for Adaptive Network-on-Chip Power-Gating</title><author>Huang, Jiayi ; Bhosekar, Shilpa ; Boyapati, Rahul ; Wang, Ningyuan ; Hur, Byul ; Yum, Ki Hwan ; Kim, Eun Jung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-71202717c5dcbc03e10441ef3f1b74f357947d79eb1e739bf10630237b6c36c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Benchmarks</topic><topic>Computer architecture</topic><topic>Heuristic algorithms</topic><topic>Microarchitecture</topic><topic>Network interfaces</topic><topic>Network latency</topic><topic>Networks-on-chip</topic><topic>Power consumption</topic><topic>Power demand</topic><topic>power-gating</topic><topic>Routers</topic><topic>Routing</topic><topic>routing algorithm</topic><topic>Routing protocols</topic><topic>System on chip</topic><topic>Voting</topic><topic>Weight reduction</topic><topic>Workload</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jiayi</creatorcontrib><creatorcontrib>Bhosekar, Shilpa</creatorcontrib><creatorcontrib>Boyapati, Rahul</creatorcontrib><creatorcontrib>Wang, Ningyuan</creatorcontrib><creatorcontrib>Hur, Byul</creatorcontrib><creatorcontrib>Yum, Ki Hwan</creatorcontrib><creatorcontrib>Kim, Eun Jung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jiayi</au><au>Bhosekar, Shilpa</au><au>Boyapati, Rahul</au><au>Wang, Ningyuan</au><au>Hur, Byul</au><au>Yum, Ki Hwan</au><au>Kim, Eun Jung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Voting Approach for Adaptive Network-on-Chip Power-Gating</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>70</volume><issue>11</issue><spage>1962</spage><epage>1975</epage><pages>1962-1975</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>Scalable Networks-on-Chip (NoCs) have become the standard interconnection mechanisms in large-scale multicore architectures. These NoCs consume a large fraction of the on-chip power budget, where the static portion is becoming dominant as technology scales down to sub-10nm node. Therefore, it is essential to reduce static power so as to achieve power- and energy-efficient computing. Power-Gating as an effective static power saving technique can be used to power off inactive routers for static power saving. However, packet deliveries in irregular power-gated networks suffer from detour or waiting time overhead to either route around or wake up power-gated routers. In this article, we propose Fly-Over ( Flov ) , a voting approach for dynamic router power-gating in a light-weight and distributed manner, which includes Flov router microarchitecture, adaptive power-gating policy, and low-latency dynamic routing algorithms. We evaluate Flov using synthetic workloads as well as real workloads from PARSEC 2.1 benchmark suite. Our full-system evaluations show that Flov reduces the power consumption of NoC by 31 and 20 percent, respectively, on average across several benchmarks, compared to the baseline and the state-of-the-art while maintaining the similar performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TC.2020.3033163</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4011-6668</orcidid><orcidid>https://orcid.org/0000-0003-1094-485X</orcidid><orcidid>https://orcid.org/0000-0002-3130-1434</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9340
ispartof IEEE transactions on computers, 2021-11, Vol.70 (11), p.1962-1975
issn 0018-9340
1557-9956
language eng
recordid cdi_ieee_primary_9237098
source IEEE Xplore (Online service)
subjects Algorithms
Benchmarks
Computer architecture
Heuristic algorithms
Microarchitecture
Network interfaces
Network latency
Networks-on-chip
Power consumption
Power demand
power-gating
Routers
Routing
routing algorithm
Routing protocols
System on chip
Voting
Weight reduction
Workload
Workloads
title A Voting Approach for Adaptive Network-on-Chip Power-Gating
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A31%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Voting%20Approach%20for%20Adaptive%20Network-on-Chip%20Power-Gating&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Huang,%20Jiayi&rft.date=2021-11-01&rft.volume=70&rft.issue=11&rft.spage=1962&rft.epage=1975&rft.pages=1962-1975&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/TC.2020.3033163&rft_dat=%3Cproquest_ieee_%3E2580098689%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c330t-71202717c5dcbc03e10441ef3f1b74f357947d79eb1e739bf10630237b6c36c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2580098689&rft_id=info:pmid/&rft_ieee_id=9237098&rfr_iscdi=true