Loading…
Neural Network-Based Distributed Adaptive Pre-Assigned Finite-Time Consensus of Multiple TCP/AQM Networks
In this study, a class of finite-time consensus of multiple transmission control protocol/active queue management (TCP/AQM) networks is investigated on the basis of a design idea of multi-agent systems, and for the first time, to our knowledge, a novel congestion control concept with neural networks...
Saved in:
Published in: | IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2021-01, Vol.68 (1), p.387-395 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-4b4a9818a1ede1f25b5d3c86ae7d035700669a506cb7eea525b3195ac6f174873 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-4b4a9818a1ede1f25b5d3c86ae7d035700669a506cb7eea525b3195ac6f174873 |
container_end_page | 395 |
container_issue | 1 |
container_start_page | 387 |
container_title | IEEE transactions on circuits and systems. I, Regular papers |
container_volume | 68 |
creator | Wang, Chunmei Chen, Xiangyong Cao, Jinde Qiu, Jianlong Liu, Yang Luo, Yiping |
description | In this study, a class of finite-time consensus of multiple transmission control protocol/active queue management (TCP/AQM) networks is investigated on the basis of a design idea of multi-agent systems, and for the first time, to our knowledge, a novel congestion control concept with neural networks is proposed. First, the problem statement and design goal of the consensus of multiple TCP/AQM networks is given. Then, a pre-assigned finite-time function is introduced to ensure that the tracking error approaches a pre-defined area within finite time. Furthermore, by combining a barrier Lyapunov function and backstepping technique, a neural network-based distributed adaptive finite-time control protocol for the output consensus of multiple TCP/AQM networks is presented, which can effectively generate the desired controls and ensure that the convergent time of all errors has nothing to do with the initial condition and design parameters. In addition, all signals in the closed-loop system are bounded. Finally, an example is given to further illustrate the effectiveness of the theoretical finding presented. |
doi_str_mv | 10.1109/TCSI.2020.3031663 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9239344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9239344</ieee_id><sourcerecordid>2477251965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-4b4a9818a1ede1f25b5d3c86ae7d035700669a506cb7eea525b3195ac6f174873</originalsourceid><addsrcrecordid>eNo9kE1Pg0AQhonRxFr9AcYLiedt94Nd2COi1SZtrRHPmwUGs5UC7oLGfy-k1dO8mTzvTPJ43jXBM0KwnKfJ63JGMcUzhhkRgp14E8J5hHCExemYA4kiRqNz78K5HcZUDtzEMxvora78DXTfjf1Ad9pB4d8b11mT9d2Q40K3nfkCf2sBxc6Z93rYLkxtOkCp2YOfNLWD2vXOb0p_3VedaSvw02Q7j1_Wf5fdpXdW6srB1XFOvbfFQ5o8odXz4zKJVyinknUoyAItIxJpAgWQkvKMFyyPhIawwIyHGAshNcciz0IAzQeAEcl1LkoSBlHIpt7t4W5rm88eXKd2TW_r4aWiQRhSTqTgA0UOVG4b5yyUqrVmr-2PIliNRtVoVI1G1dHo0Lk5dAwA_POSMsmCgP0C14Fxkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477251965</pqid></control><display><type>article</type><title>Neural Network-Based Distributed Adaptive Pre-Assigned Finite-Time Consensus of Multiple TCP/AQM Networks</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wang, Chunmei ; Chen, Xiangyong ; Cao, Jinde ; Qiu, Jianlong ; Liu, Yang ; Luo, Yiping</creator><creatorcontrib>Wang, Chunmei ; Chen, Xiangyong ; Cao, Jinde ; Qiu, Jianlong ; Liu, Yang ; Luo, Yiping</creatorcontrib><description>In this study, a class of finite-time consensus of multiple transmission control protocol/active queue management (TCP/AQM) networks is investigated on the basis of a design idea of multi-agent systems, and for the first time, to our knowledge, a novel congestion control concept with neural networks is proposed. First, the problem statement and design goal of the consensus of multiple TCP/AQM networks is given. Then, a pre-assigned finite-time function is introduced to ensure that the tracking error approaches a pre-defined area within finite time. Furthermore, by combining a barrier Lyapunov function and backstepping technique, a neural network-based distributed adaptive finite-time control protocol for the output consensus of multiple TCP/AQM networks is presented, which can effectively generate the desired controls and ensure that the convergent time of all errors has nothing to do with the initial condition and design parameters. In addition, all signals in the closed-loop system are bounded. Finally, an example is given to further illustrate the effectiveness of the theoretical finding presented.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2020.3031663</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active control ; Adaptive control ; Automation ; Backstepping ; Closed loop systems ; Complex systems ; Design parameters ; distributed control ; Feedback control ; Finite-time consensus ; Liapunov functions ; Multi-agent systems ; Multiagent systems ; multiple TCP/AQM networks ; neural network ; Neural networks ; TCP (protocol) ; Time functions ; Tracking errors</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2021-01, Vol.68 (1), p.387-395</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-4b4a9818a1ede1f25b5d3c86ae7d035700669a506cb7eea525b3195ac6f174873</citedby><cites>FETCH-LOGICAL-c293t-4b4a9818a1ede1f25b5d3c86ae7d035700669a506cb7eea525b3195ac6f174873</cites><orcidid>0000-0002-9886-3570 ; 0000-0001-9402-3366 ; 0000-0001-7560-5467 ; 0000-0002-2963-7270 ; 0000-0003-3133-7119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9239344$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Wang, Chunmei</creatorcontrib><creatorcontrib>Chen, Xiangyong</creatorcontrib><creatorcontrib>Cao, Jinde</creatorcontrib><creatorcontrib>Qiu, Jianlong</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Luo, Yiping</creatorcontrib><title>Neural Network-Based Distributed Adaptive Pre-Assigned Finite-Time Consensus of Multiple TCP/AQM Networks</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>In this study, a class of finite-time consensus of multiple transmission control protocol/active queue management (TCP/AQM) networks is investigated on the basis of a design idea of multi-agent systems, and for the first time, to our knowledge, a novel congestion control concept with neural networks is proposed. First, the problem statement and design goal of the consensus of multiple TCP/AQM networks is given. Then, a pre-assigned finite-time function is introduced to ensure that the tracking error approaches a pre-defined area within finite time. Furthermore, by combining a barrier Lyapunov function and backstepping technique, a neural network-based distributed adaptive finite-time control protocol for the output consensus of multiple TCP/AQM networks is presented, which can effectively generate the desired controls and ensure that the convergent time of all errors has nothing to do with the initial condition and design parameters. In addition, all signals in the closed-loop system are bounded. Finally, an example is given to further illustrate the effectiveness of the theoretical finding presented.</description><subject>Active control</subject><subject>Adaptive control</subject><subject>Automation</subject><subject>Backstepping</subject><subject>Closed loop systems</subject><subject>Complex systems</subject><subject>Design parameters</subject><subject>distributed control</subject><subject>Feedback control</subject><subject>Finite-time consensus</subject><subject>Liapunov functions</subject><subject>Multi-agent systems</subject><subject>Multiagent systems</subject><subject>multiple TCP/AQM networks</subject><subject>neural network</subject><subject>Neural networks</subject><subject>TCP (protocol)</subject><subject>Time functions</subject><subject>Tracking errors</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Pg0AQhonRxFr9AcYLiedt94Nd2COi1SZtrRHPmwUGs5UC7oLGfy-k1dO8mTzvTPJ43jXBM0KwnKfJ63JGMcUzhhkRgp14E8J5hHCExemYA4kiRqNz78K5HcZUDtzEMxvora78DXTfjf1Ad9pB4d8b11mT9d2Q40K3nfkCf2sBxc6Z93rYLkxtOkCp2YOfNLWD2vXOb0p_3VedaSvw02Q7j1_Wf5fdpXdW6srB1XFOvbfFQ5o8odXz4zKJVyinknUoyAItIxJpAgWQkvKMFyyPhIawwIyHGAshNcciz0IAzQeAEcl1LkoSBlHIpt7t4W5rm88eXKd2TW_r4aWiQRhSTqTgA0UOVG4b5yyUqrVmr-2PIliNRtVoVI1G1dHo0Lk5dAwA_POSMsmCgP0C14Fxkg</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Wang, Chunmei</creator><creator>Chen, Xiangyong</creator><creator>Cao, Jinde</creator><creator>Qiu, Jianlong</creator><creator>Liu, Yang</creator><creator>Luo, Yiping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9886-3570</orcidid><orcidid>https://orcid.org/0000-0001-9402-3366</orcidid><orcidid>https://orcid.org/0000-0001-7560-5467</orcidid><orcidid>https://orcid.org/0000-0002-2963-7270</orcidid><orcidid>https://orcid.org/0000-0003-3133-7119</orcidid></search><sort><creationdate>202101</creationdate><title>Neural Network-Based Distributed Adaptive Pre-Assigned Finite-Time Consensus of Multiple TCP/AQM Networks</title><author>Wang, Chunmei ; Chen, Xiangyong ; Cao, Jinde ; Qiu, Jianlong ; Liu, Yang ; Luo, Yiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-4b4a9818a1ede1f25b5d3c86ae7d035700669a506cb7eea525b3195ac6f174873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Active control</topic><topic>Adaptive control</topic><topic>Automation</topic><topic>Backstepping</topic><topic>Closed loop systems</topic><topic>Complex systems</topic><topic>Design parameters</topic><topic>distributed control</topic><topic>Feedback control</topic><topic>Finite-time consensus</topic><topic>Liapunov functions</topic><topic>Multi-agent systems</topic><topic>Multiagent systems</topic><topic>multiple TCP/AQM networks</topic><topic>neural network</topic><topic>Neural networks</topic><topic>TCP (protocol)</topic><topic>Time functions</topic><topic>Tracking errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chunmei</creatorcontrib><creatorcontrib>Chen, Xiangyong</creatorcontrib><creatorcontrib>Cao, Jinde</creatorcontrib><creatorcontrib>Qiu, Jianlong</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Luo, Yiping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chunmei</au><au>Chen, Xiangyong</au><au>Cao, Jinde</au><au>Qiu, Jianlong</au><au>Liu, Yang</au><au>Luo, Yiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Network-Based Distributed Adaptive Pre-Assigned Finite-Time Consensus of Multiple TCP/AQM Networks</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2021-01</date><risdate>2021</risdate><volume>68</volume><issue>1</issue><spage>387</spage><epage>395</epage><pages>387-395</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>In this study, a class of finite-time consensus of multiple transmission control protocol/active queue management (TCP/AQM) networks is investigated on the basis of a design idea of multi-agent systems, and for the first time, to our knowledge, a novel congestion control concept with neural networks is proposed. First, the problem statement and design goal of the consensus of multiple TCP/AQM networks is given. Then, a pre-assigned finite-time function is introduced to ensure that the tracking error approaches a pre-defined area within finite time. Furthermore, by combining a barrier Lyapunov function and backstepping technique, a neural network-based distributed adaptive finite-time control protocol for the output consensus of multiple TCP/AQM networks is presented, which can effectively generate the desired controls and ensure that the convergent time of all errors has nothing to do with the initial condition and design parameters. In addition, all signals in the closed-loop system are bounded. Finally, an example is given to further illustrate the effectiveness of the theoretical finding presented.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2020.3031663</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9886-3570</orcidid><orcidid>https://orcid.org/0000-0001-9402-3366</orcidid><orcidid>https://orcid.org/0000-0001-7560-5467</orcidid><orcidid>https://orcid.org/0000-0002-2963-7270</orcidid><orcidid>https://orcid.org/0000-0003-3133-7119</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-8328 |
ispartof | IEEE transactions on circuits and systems. I, Regular papers, 2021-01, Vol.68 (1), p.387-395 |
issn | 1549-8328 1558-0806 |
language | eng |
recordid | cdi_ieee_primary_9239344 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Active control Adaptive control Automation Backstepping Closed loop systems Complex systems Design parameters distributed control Feedback control Finite-time consensus Liapunov functions Multi-agent systems Multiagent systems multiple TCP/AQM networks neural network Neural networks TCP (protocol) Time functions Tracking errors |
title | Neural Network-Based Distributed Adaptive Pre-Assigned Finite-Time Consensus of Multiple TCP/AQM Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A30%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Network-Based%20Distributed%20Adaptive%20Pre-Assigned%20Finite-Time%20Consensus%20of%20Multiple%20TCP/AQM%20Networks&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Wang,%20Chunmei&rft.date=2021-01&rft.volume=68&rft.issue=1&rft.spage=387&rft.epage=395&rft.pages=387-395&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2020.3031663&rft_dat=%3Cproquest_ieee_%3E2477251965%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-4b4a9818a1ede1f25b5d3c86ae7d035700669a506cb7eea525b3195ac6f174873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2477251965&rft_id=info:pmid/&rft_ieee_id=9239344&rfr_iscdi=true |