Loading…

Neural Network-Based Distributed Adaptive Pre-Assigned Finite-Time Consensus of Multiple TCP/AQM Networks

In this study, a class of finite-time consensus of multiple transmission control protocol/active queue management (TCP/AQM) networks is investigated on the basis of a design idea of multi-agent systems, and for the first time, to our knowledge, a novel congestion control concept with neural networks...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2021-01, Vol.68 (1), p.387-395
Main Authors: Wang, Chunmei, Chen, Xiangyong, Cao, Jinde, Qiu, Jianlong, Liu, Yang, Luo, Yiping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-4b4a9818a1ede1f25b5d3c86ae7d035700669a506cb7eea525b3195ac6f174873
cites cdi_FETCH-LOGICAL-c293t-4b4a9818a1ede1f25b5d3c86ae7d035700669a506cb7eea525b3195ac6f174873
container_end_page 395
container_issue 1
container_start_page 387
container_title IEEE transactions on circuits and systems. I, Regular papers
container_volume 68
creator Wang, Chunmei
Chen, Xiangyong
Cao, Jinde
Qiu, Jianlong
Liu, Yang
Luo, Yiping
description In this study, a class of finite-time consensus of multiple transmission control protocol/active queue management (TCP/AQM) networks is investigated on the basis of a design idea of multi-agent systems, and for the first time, to our knowledge, a novel congestion control concept with neural networks is proposed. First, the problem statement and design goal of the consensus of multiple TCP/AQM networks is given. Then, a pre-assigned finite-time function is introduced to ensure that the tracking error approaches a pre-defined area within finite time. Furthermore, by combining a barrier Lyapunov function and backstepping technique, a neural network-based distributed adaptive finite-time control protocol for the output consensus of multiple TCP/AQM networks is presented, which can effectively generate the desired controls and ensure that the convergent time of all errors has nothing to do with the initial condition and design parameters. In addition, all signals in the closed-loop system are bounded. Finally, an example is given to further illustrate the effectiveness of the theoretical finding presented.
doi_str_mv 10.1109/TCSI.2020.3031663
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9239344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9239344</ieee_id><sourcerecordid>2477251965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-4b4a9818a1ede1f25b5d3c86ae7d035700669a506cb7eea525b3195ac6f174873</originalsourceid><addsrcrecordid>eNo9kE1Pg0AQhonRxFr9AcYLiedt94Nd2COi1SZtrRHPmwUGs5UC7oLGfy-k1dO8mTzvTPJ43jXBM0KwnKfJ63JGMcUzhhkRgp14E8J5hHCExemYA4kiRqNz78K5HcZUDtzEMxvora78DXTfjf1Ad9pB4d8b11mT9d2Q40K3nfkCf2sBxc6Z93rYLkxtOkCp2YOfNLWD2vXOb0p_3VedaSvw02Q7j1_Wf5fdpXdW6srB1XFOvbfFQ5o8odXz4zKJVyinknUoyAItIxJpAgWQkvKMFyyPhIawwIyHGAshNcciz0IAzQeAEcl1LkoSBlHIpt7t4W5rm88eXKd2TW_r4aWiQRhSTqTgA0UOVG4b5yyUqrVmr-2PIliNRtVoVI1G1dHo0Lk5dAwA_POSMsmCgP0C14Fxkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477251965</pqid></control><display><type>article</type><title>Neural Network-Based Distributed Adaptive Pre-Assigned Finite-Time Consensus of Multiple TCP/AQM Networks</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wang, Chunmei ; Chen, Xiangyong ; Cao, Jinde ; Qiu, Jianlong ; Liu, Yang ; Luo, Yiping</creator><creatorcontrib>Wang, Chunmei ; Chen, Xiangyong ; Cao, Jinde ; Qiu, Jianlong ; Liu, Yang ; Luo, Yiping</creatorcontrib><description>In this study, a class of finite-time consensus of multiple transmission control protocol/active queue management (TCP/AQM) networks is investigated on the basis of a design idea of multi-agent systems, and for the first time, to our knowledge, a novel congestion control concept with neural networks is proposed. First, the problem statement and design goal of the consensus of multiple TCP/AQM networks is given. Then, a pre-assigned finite-time function is introduced to ensure that the tracking error approaches a pre-defined area within finite time. Furthermore, by combining a barrier Lyapunov function and backstepping technique, a neural network-based distributed adaptive finite-time control protocol for the output consensus of multiple TCP/AQM networks is presented, which can effectively generate the desired controls and ensure that the convergent time of all errors has nothing to do with the initial condition and design parameters. In addition, all signals in the closed-loop system are bounded. Finally, an example is given to further illustrate the effectiveness of the theoretical finding presented.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2020.3031663</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active control ; Adaptive control ; Automation ; Backstepping ; Closed loop systems ; Complex systems ; Design parameters ; distributed control ; Feedback control ; Finite-time consensus ; Liapunov functions ; Multi-agent systems ; Multiagent systems ; multiple TCP/AQM networks ; neural network ; Neural networks ; TCP (protocol) ; Time functions ; Tracking errors</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2021-01, Vol.68 (1), p.387-395</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-4b4a9818a1ede1f25b5d3c86ae7d035700669a506cb7eea525b3195ac6f174873</citedby><cites>FETCH-LOGICAL-c293t-4b4a9818a1ede1f25b5d3c86ae7d035700669a506cb7eea525b3195ac6f174873</cites><orcidid>0000-0002-9886-3570 ; 0000-0001-9402-3366 ; 0000-0001-7560-5467 ; 0000-0002-2963-7270 ; 0000-0003-3133-7119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9239344$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Wang, Chunmei</creatorcontrib><creatorcontrib>Chen, Xiangyong</creatorcontrib><creatorcontrib>Cao, Jinde</creatorcontrib><creatorcontrib>Qiu, Jianlong</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Luo, Yiping</creatorcontrib><title>Neural Network-Based Distributed Adaptive Pre-Assigned Finite-Time Consensus of Multiple TCP/AQM Networks</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>In this study, a class of finite-time consensus of multiple transmission control protocol/active queue management (TCP/AQM) networks is investigated on the basis of a design idea of multi-agent systems, and for the first time, to our knowledge, a novel congestion control concept with neural networks is proposed. First, the problem statement and design goal of the consensus of multiple TCP/AQM networks is given. Then, a pre-assigned finite-time function is introduced to ensure that the tracking error approaches a pre-defined area within finite time. Furthermore, by combining a barrier Lyapunov function and backstepping technique, a neural network-based distributed adaptive finite-time control protocol for the output consensus of multiple TCP/AQM networks is presented, which can effectively generate the desired controls and ensure that the convergent time of all errors has nothing to do with the initial condition and design parameters. In addition, all signals in the closed-loop system are bounded. Finally, an example is given to further illustrate the effectiveness of the theoretical finding presented.</description><subject>Active control</subject><subject>Adaptive control</subject><subject>Automation</subject><subject>Backstepping</subject><subject>Closed loop systems</subject><subject>Complex systems</subject><subject>Design parameters</subject><subject>distributed control</subject><subject>Feedback control</subject><subject>Finite-time consensus</subject><subject>Liapunov functions</subject><subject>Multi-agent systems</subject><subject>Multiagent systems</subject><subject>multiple TCP/AQM networks</subject><subject>neural network</subject><subject>Neural networks</subject><subject>TCP (protocol)</subject><subject>Time functions</subject><subject>Tracking errors</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Pg0AQhonRxFr9AcYLiedt94Nd2COi1SZtrRHPmwUGs5UC7oLGfy-k1dO8mTzvTPJ43jXBM0KwnKfJ63JGMcUzhhkRgp14E8J5hHCExemYA4kiRqNz78K5HcZUDtzEMxvora78DXTfjf1Ad9pB4d8b11mT9d2Q40K3nfkCf2sBxc6Z93rYLkxtOkCp2YOfNLWD2vXOb0p_3VedaSvw02Q7j1_Wf5fdpXdW6srB1XFOvbfFQ5o8odXz4zKJVyinknUoyAItIxJpAgWQkvKMFyyPhIawwIyHGAshNcciz0IAzQeAEcl1LkoSBlHIpt7t4W5rm88eXKd2TW_r4aWiQRhSTqTgA0UOVG4b5yyUqrVmr-2PIliNRtVoVI1G1dHo0Lk5dAwA_POSMsmCgP0C14Fxkg</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Wang, Chunmei</creator><creator>Chen, Xiangyong</creator><creator>Cao, Jinde</creator><creator>Qiu, Jianlong</creator><creator>Liu, Yang</creator><creator>Luo, Yiping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9886-3570</orcidid><orcidid>https://orcid.org/0000-0001-9402-3366</orcidid><orcidid>https://orcid.org/0000-0001-7560-5467</orcidid><orcidid>https://orcid.org/0000-0002-2963-7270</orcidid><orcidid>https://orcid.org/0000-0003-3133-7119</orcidid></search><sort><creationdate>202101</creationdate><title>Neural Network-Based Distributed Adaptive Pre-Assigned Finite-Time Consensus of Multiple TCP/AQM Networks</title><author>Wang, Chunmei ; Chen, Xiangyong ; Cao, Jinde ; Qiu, Jianlong ; Liu, Yang ; Luo, Yiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-4b4a9818a1ede1f25b5d3c86ae7d035700669a506cb7eea525b3195ac6f174873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Active control</topic><topic>Adaptive control</topic><topic>Automation</topic><topic>Backstepping</topic><topic>Closed loop systems</topic><topic>Complex systems</topic><topic>Design parameters</topic><topic>distributed control</topic><topic>Feedback control</topic><topic>Finite-time consensus</topic><topic>Liapunov functions</topic><topic>Multi-agent systems</topic><topic>Multiagent systems</topic><topic>multiple TCP/AQM networks</topic><topic>neural network</topic><topic>Neural networks</topic><topic>TCP (protocol)</topic><topic>Time functions</topic><topic>Tracking errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chunmei</creatorcontrib><creatorcontrib>Chen, Xiangyong</creatorcontrib><creatorcontrib>Cao, Jinde</creatorcontrib><creatorcontrib>Qiu, Jianlong</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Luo, Yiping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chunmei</au><au>Chen, Xiangyong</au><au>Cao, Jinde</au><au>Qiu, Jianlong</au><au>Liu, Yang</au><au>Luo, Yiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Network-Based Distributed Adaptive Pre-Assigned Finite-Time Consensus of Multiple TCP/AQM Networks</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2021-01</date><risdate>2021</risdate><volume>68</volume><issue>1</issue><spage>387</spage><epage>395</epage><pages>387-395</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>In this study, a class of finite-time consensus of multiple transmission control protocol/active queue management (TCP/AQM) networks is investigated on the basis of a design idea of multi-agent systems, and for the first time, to our knowledge, a novel congestion control concept with neural networks is proposed. First, the problem statement and design goal of the consensus of multiple TCP/AQM networks is given. Then, a pre-assigned finite-time function is introduced to ensure that the tracking error approaches a pre-defined area within finite time. Furthermore, by combining a barrier Lyapunov function and backstepping technique, a neural network-based distributed adaptive finite-time control protocol for the output consensus of multiple TCP/AQM networks is presented, which can effectively generate the desired controls and ensure that the convergent time of all errors has nothing to do with the initial condition and design parameters. In addition, all signals in the closed-loop system are bounded. Finally, an example is given to further illustrate the effectiveness of the theoretical finding presented.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2020.3031663</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9886-3570</orcidid><orcidid>https://orcid.org/0000-0001-9402-3366</orcidid><orcidid>https://orcid.org/0000-0001-7560-5467</orcidid><orcidid>https://orcid.org/0000-0002-2963-7270</orcidid><orcidid>https://orcid.org/0000-0003-3133-7119</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-8328
ispartof IEEE transactions on circuits and systems. I, Regular papers, 2021-01, Vol.68 (1), p.387-395
issn 1549-8328
1558-0806
language eng
recordid cdi_ieee_primary_9239344
source IEEE Electronic Library (IEL) Journals
subjects Active control
Adaptive control
Automation
Backstepping
Closed loop systems
Complex systems
Design parameters
distributed control
Feedback control
Finite-time consensus
Liapunov functions
Multi-agent systems
Multiagent systems
multiple TCP/AQM networks
neural network
Neural networks
TCP (protocol)
Time functions
Tracking errors
title Neural Network-Based Distributed Adaptive Pre-Assigned Finite-Time Consensus of Multiple TCP/AQM Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A30%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Network-Based%20Distributed%20Adaptive%20Pre-Assigned%20Finite-Time%20Consensus%20of%20Multiple%20TCP/AQM%20Networks&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Wang,%20Chunmei&rft.date=2021-01&rft.volume=68&rft.issue=1&rft.spage=387&rft.epage=395&rft.pages=387-395&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2020.3031663&rft_dat=%3Cproquest_ieee_%3E2477251965%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-4b4a9818a1ede1f25b5d3c86ae7d035700669a506cb7eea525b3195ac6f174873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2477251965&rft_id=info:pmid/&rft_ieee_id=9239344&rfr_iscdi=true