Loading…

CCTV based system for detection of anti-virus masks

This paper presents the use of neural networks to detect people with anti-virus masks. The algorithm allows to determine if a person has a correctly worn mask (covered nose and mouth). The use of neural networks has been compared with typical Haar cascade frontal face solutions available in the Open...

Full description

Saved in:
Bibliographic Details
Main Authors: Podbucki, Kacper, Suder, Jakub, Marciniak, Tomasz, Dabrowski, Adam
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 91
container_issue
container_start_page 87
container_title
container_volume
creator Podbucki, Kacper
Suder, Jakub
Marciniak, Tomasz
Dabrowski, Adam
description This paper presents the use of neural networks to detect people with anti-virus masks. The algorithm allows to determine if a person has a correctly worn mask (covered nose and mouth). The use of neural networks has been compared with typical Haar cascade frontal face solutions available in the OpenCV library. The proposed solution has been checked for efficiency and precision, as well as for the minimum resolution requirements of the resulting facial image. The software works on still images as well as on video sequences from computer webcams and CCTV cameras.
doi_str_mv 10.23919/SPA50552.2020.9241303
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9241303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9241303</ieee_id><sourcerecordid>9241303</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-30824f36843f1f98c9f7ca291da659ecf54168cbc51c636675a3eeaf0d128dbb3</originalsourceid><addsrcrecordid>eNo1j9FKwzAUhqMoOOeeQJC8QOvJOc1pcjmKTmGg4PR2pGkCUbtKU4W9vQPn1fdfffyfEDcKSiSr7O3L81KD1lgiIJQWK0VAJ-LSECOwJlufihkScgGk7Nn_RsYLscj5HQAUm4OLZ4KaZvMmW5dDJ_M-T6GXcRhlF6bgpzTs5BCl202p-Enjd5a9yx_5SpxH95nD4si5eL2_2zQPxfpp9dgs10VStZ4KAoNVJDYVRRWt8TbW3qFVnWNtg4-6OtzwrdfKMzHX2lEILkKn0HRtS3Nx_edNIYTt15h6N-63x176BRUFRxg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>CCTV based system for detection of anti-virus masks</title><source>IEEE Xplore All Conference Series</source><creator>Podbucki, Kacper ; Suder, Jakub ; Marciniak, Tomasz ; Dabrowski, Adam</creator><creatorcontrib>Podbucki, Kacper ; Suder, Jakub ; Marciniak, Tomasz ; Dabrowski, Adam</creatorcontrib><description>This paper presents the use of neural networks to detect people with anti-virus masks. The algorithm allows to determine if a person has a correctly worn mask (covered nose and mouth). The use of neural networks has been compared with typical Haar cascade frontal face solutions available in the OpenCV library. The proposed solution has been checked for efficiency and precision, as well as for the minimum resolution requirements of the resulting facial image. The software works on still images as well as on video sequences from computer webcams and CCTV cameras.</description><identifier>ISSN: 2326-0262</identifier><identifier>EISSN: 2326-0319</identifier><identifier>EISBN: 8362065397</identifier><identifier>EISBN: 9788362065394</identifier><identifier>DOI: 10.23919/SPA50552.2020.9241303</identifier><language>eng</language><publisher>Division of Signal Processing and Electronic Systems, Poznan University of Technology (DSPES PUT)</publisher><subject>anti-virus masks ; convolutional neural networks ; COVID-19 ; Face detection ; Face recognition ; Faces ; Image resolution ; mask detection ; Neural networks ; OpenCV ; Python programming ; Software ; vision system</subject><ispartof>2020 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), 2020, p.87-91</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9241303$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9241303$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Podbucki, Kacper</creatorcontrib><creatorcontrib>Suder, Jakub</creatorcontrib><creatorcontrib>Marciniak, Tomasz</creatorcontrib><creatorcontrib>Dabrowski, Adam</creatorcontrib><title>CCTV based system for detection of anti-virus masks</title><title>2020 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)</title><addtitle>SPA</addtitle><description>This paper presents the use of neural networks to detect people with anti-virus masks. The algorithm allows to determine if a person has a correctly worn mask (covered nose and mouth). The use of neural networks has been compared with typical Haar cascade frontal face solutions available in the OpenCV library. The proposed solution has been checked for efficiency and precision, as well as for the minimum resolution requirements of the resulting facial image. The software works on still images as well as on video sequences from computer webcams and CCTV cameras.</description><subject>anti-virus masks</subject><subject>convolutional neural networks</subject><subject>COVID-19</subject><subject>Face detection</subject><subject>Face recognition</subject><subject>Faces</subject><subject>Image resolution</subject><subject>mask detection</subject><subject>Neural networks</subject><subject>OpenCV</subject><subject>Python programming</subject><subject>Software</subject><subject>vision system</subject><issn>2326-0262</issn><issn>2326-0319</issn><isbn>8362065397</isbn><isbn>9788362065394</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j9FKwzAUhqMoOOeeQJC8QOvJOc1pcjmKTmGg4PR2pGkCUbtKU4W9vQPn1fdfffyfEDcKSiSr7O3L81KD1lgiIJQWK0VAJ-LSECOwJlufihkScgGk7Nn_RsYLscj5HQAUm4OLZ4KaZvMmW5dDJ_M-T6GXcRhlF6bgpzTs5BCl202p-Enjd5a9yx_5SpxH95nD4si5eL2_2zQPxfpp9dgs10VStZ4KAoNVJDYVRRWt8TbW3qFVnWNtg4-6OtzwrdfKMzHX2lEILkKn0HRtS3Nx_edNIYTt15h6N-63x176BRUFRxg</recordid><startdate>20200923</startdate><enddate>20200923</enddate><creator>Podbucki, Kacper</creator><creator>Suder, Jakub</creator><creator>Marciniak, Tomasz</creator><creator>Dabrowski, Adam</creator><general>Division of Signal Processing and Electronic Systems, Poznan University of Technology (DSPES PUT)</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20200923</creationdate><title>CCTV based system for detection of anti-virus masks</title><author>Podbucki, Kacper ; Suder, Jakub ; Marciniak, Tomasz ; Dabrowski, Adam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-30824f36843f1f98c9f7ca291da659ecf54168cbc51c636675a3eeaf0d128dbb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>anti-virus masks</topic><topic>convolutional neural networks</topic><topic>COVID-19</topic><topic>Face detection</topic><topic>Face recognition</topic><topic>Faces</topic><topic>Image resolution</topic><topic>mask detection</topic><topic>Neural networks</topic><topic>OpenCV</topic><topic>Python programming</topic><topic>Software</topic><topic>vision system</topic><toplevel>online_resources</toplevel><creatorcontrib>Podbucki, Kacper</creatorcontrib><creatorcontrib>Suder, Jakub</creatorcontrib><creatorcontrib>Marciniak, Tomasz</creatorcontrib><creatorcontrib>Dabrowski, Adam</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Podbucki, Kacper</au><au>Suder, Jakub</au><au>Marciniak, Tomasz</au><au>Dabrowski, Adam</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>CCTV based system for detection of anti-virus masks</atitle><btitle>2020 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)</btitle><stitle>SPA</stitle><date>2020-09-23</date><risdate>2020</risdate><spage>87</spage><epage>91</epage><pages>87-91</pages><issn>2326-0262</issn><eissn>2326-0319</eissn><eisbn>8362065397</eisbn><eisbn>9788362065394</eisbn><abstract>This paper presents the use of neural networks to detect people with anti-virus masks. The algorithm allows to determine if a person has a correctly worn mask (covered nose and mouth). The use of neural networks has been compared with typical Haar cascade frontal face solutions available in the OpenCV library. The proposed solution has been checked for efficiency and precision, as well as for the minimum resolution requirements of the resulting facial image. The software works on still images as well as on video sequences from computer webcams and CCTV cameras.</abstract><pub>Division of Signal Processing and Electronic Systems, Poznan University of Technology (DSPES PUT)</pub><doi>10.23919/SPA50552.2020.9241303</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2326-0262
ispartof 2020 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), 2020, p.87-91
issn 2326-0262
2326-0319
language eng
recordid cdi_ieee_primary_9241303
source IEEE Xplore All Conference Series
subjects anti-virus masks
convolutional neural networks
COVID-19
Face detection
Face recognition
Faces
Image resolution
mask detection
Neural networks
OpenCV
Python programming
Software
vision system
title CCTV based system for detection of anti-virus masks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A12%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=CCTV%20based%20system%20for%20detection%20of%20anti-virus%20masks&rft.btitle=2020%20Signal%20Processing:%20Algorithms,%20Architectures,%20Arrangements,%20and%20Applications%20(SPA)&rft.au=Podbucki,%20Kacper&rft.date=2020-09-23&rft.spage=87&rft.epage=91&rft.pages=87-91&rft.issn=2326-0262&rft.eissn=2326-0319&rft_id=info:doi/10.23919/SPA50552.2020.9241303&rft.eisbn=8362065397&rft.eisbn_list=9788362065394&rft_dat=%3Cieee_CHZPO%3E9241303%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-30824f36843f1f98c9f7ca291da659ecf54168cbc51c636675a3eeaf0d128dbb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9241303&rfr_iscdi=true