Loading…
CCTV based system for detection of anti-virus masks
This paper presents the use of neural networks to detect people with anti-virus masks. The algorithm allows to determine if a person has a correctly worn mask (covered nose and mouth). The use of neural networks has been compared with typical Haar cascade frontal face solutions available in the Open...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 91 |
container_issue | |
container_start_page | 87 |
container_title | |
container_volume | |
creator | Podbucki, Kacper Suder, Jakub Marciniak, Tomasz Dabrowski, Adam |
description | This paper presents the use of neural networks to detect people with anti-virus masks. The algorithm allows to determine if a person has a correctly worn mask (covered nose and mouth). The use of neural networks has been compared with typical Haar cascade frontal face solutions available in the OpenCV library. The proposed solution has been checked for efficiency and precision, as well as for the minimum resolution requirements of the resulting facial image. The software works on still images as well as on video sequences from computer webcams and CCTV cameras. |
doi_str_mv | 10.23919/SPA50552.2020.9241303 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9241303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9241303</ieee_id><sourcerecordid>9241303</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-30824f36843f1f98c9f7ca291da659ecf54168cbc51c636675a3eeaf0d128dbb3</originalsourceid><addsrcrecordid>eNo1j9FKwzAUhqMoOOeeQJC8QOvJOc1pcjmKTmGg4PR2pGkCUbtKU4W9vQPn1fdfffyfEDcKSiSr7O3L81KD1lgiIJQWK0VAJ-LSECOwJlufihkScgGk7Nn_RsYLscj5HQAUm4OLZ4KaZvMmW5dDJ_M-T6GXcRhlF6bgpzTs5BCl202p-Enjd5a9yx_5SpxH95nD4si5eL2_2zQPxfpp9dgs10VStZ4KAoNVJDYVRRWt8TbW3qFVnWNtg4-6OtzwrdfKMzHX2lEILkKn0HRtS3Nx_edNIYTt15h6N-63x176BRUFRxg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>CCTV based system for detection of anti-virus masks</title><source>IEEE Xplore All Conference Series</source><creator>Podbucki, Kacper ; Suder, Jakub ; Marciniak, Tomasz ; Dabrowski, Adam</creator><creatorcontrib>Podbucki, Kacper ; Suder, Jakub ; Marciniak, Tomasz ; Dabrowski, Adam</creatorcontrib><description>This paper presents the use of neural networks to detect people with anti-virus masks. The algorithm allows to determine if a person has a correctly worn mask (covered nose and mouth). The use of neural networks has been compared with typical Haar cascade frontal face solutions available in the OpenCV library. The proposed solution has been checked for efficiency and precision, as well as for the minimum resolution requirements of the resulting facial image. The software works on still images as well as on video sequences from computer webcams and CCTV cameras.</description><identifier>ISSN: 2326-0262</identifier><identifier>EISSN: 2326-0319</identifier><identifier>EISBN: 8362065397</identifier><identifier>EISBN: 9788362065394</identifier><identifier>DOI: 10.23919/SPA50552.2020.9241303</identifier><language>eng</language><publisher>Division of Signal Processing and Electronic Systems, Poznan University of Technology (DSPES PUT)</publisher><subject>anti-virus masks ; convolutional neural networks ; COVID-19 ; Face detection ; Face recognition ; Faces ; Image resolution ; mask detection ; Neural networks ; OpenCV ; Python programming ; Software ; vision system</subject><ispartof>2020 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), 2020, p.87-91</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9241303$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9241303$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Podbucki, Kacper</creatorcontrib><creatorcontrib>Suder, Jakub</creatorcontrib><creatorcontrib>Marciniak, Tomasz</creatorcontrib><creatorcontrib>Dabrowski, Adam</creatorcontrib><title>CCTV based system for detection of anti-virus masks</title><title>2020 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)</title><addtitle>SPA</addtitle><description>This paper presents the use of neural networks to detect people with anti-virus masks. The algorithm allows to determine if a person has a correctly worn mask (covered nose and mouth). The use of neural networks has been compared with typical Haar cascade frontal face solutions available in the OpenCV library. The proposed solution has been checked for efficiency and precision, as well as for the minimum resolution requirements of the resulting facial image. The software works on still images as well as on video sequences from computer webcams and CCTV cameras.</description><subject>anti-virus masks</subject><subject>convolutional neural networks</subject><subject>COVID-19</subject><subject>Face detection</subject><subject>Face recognition</subject><subject>Faces</subject><subject>Image resolution</subject><subject>mask detection</subject><subject>Neural networks</subject><subject>OpenCV</subject><subject>Python programming</subject><subject>Software</subject><subject>vision system</subject><issn>2326-0262</issn><issn>2326-0319</issn><isbn>8362065397</isbn><isbn>9788362065394</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j9FKwzAUhqMoOOeeQJC8QOvJOc1pcjmKTmGg4PR2pGkCUbtKU4W9vQPn1fdfffyfEDcKSiSr7O3L81KD1lgiIJQWK0VAJ-LSECOwJlufihkScgGk7Nn_RsYLscj5HQAUm4OLZ4KaZvMmW5dDJ_M-T6GXcRhlF6bgpzTs5BCl202p-Enjd5a9yx_5SpxH95nD4si5eL2_2zQPxfpp9dgs10VStZ4KAoNVJDYVRRWt8TbW3qFVnWNtg4-6OtzwrdfKMzHX2lEILkKn0HRtS3Nx_edNIYTt15h6N-63x176BRUFRxg</recordid><startdate>20200923</startdate><enddate>20200923</enddate><creator>Podbucki, Kacper</creator><creator>Suder, Jakub</creator><creator>Marciniak, Tomasz</creator><creator>Dabrowski, Adam</creator><general>Division of Signal Processing and Electronic Systems, Poznan University of Technology (DSPES PUT)</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20200923</creationdate><title>CCTV based system for detection of anti-virus masks</title><author>Podbucki, Kacper ; Suder, Jakub ; Marciniak, Tomasz ; Dabrowski, Adam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-30824f36843f1f98c9f7ca291da659ecf54168cbc51c636675a3eeaf0d128dbb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>anti-virus masks</topic><topic>convolutional neural networks</topic><topic>COVID-19</topic><topic>Face detection</topic><topic>Face recognition</topic><topic>Faces</topic><topic>Image resolution</topic><topic>mask detection</topic><topic>Neural networks</topic><topic>OpenCV</topic><topic>Python programming</topic><topic>Software</topic><topic>vision system</topic><toplevel>online_resources</toplevel><creatorcontrib>Podbucki, Kacper</creatorcontrib><creatorcontrib>Suder, Jakub</creatorcontrib><creatorcontrib>Marciniak, Tomasz</creatorcontrib><creatorcontrib>Dabrowski, Adam</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Podbucki, Kacper</au><au>Suder, Jakub</au><au>Marciniak, Tomasz</au><au>Dabrowski, Adam</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>CCTV based system for detection of anti-virus masks</atitle><btitle>2020 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)</btitle><stitle>SPA</stitle><date>2020-09-23</date><risdate>2020</risdate><spage>87</spage><epage>91</epage><pages>87-91</pages><issn>2326-0262</issn><eissn>2326-0319</eissn><eisbn>8362065397</eisbn><eisbn>9788362065394</eisbn><abstract>This paper presents the use of neural networks to detect people with anti-virus masks. The algorithm allows to determine if a person has a correctly worn mask (covered nose and mouth). The use of neural networks has been compared with typical Haar cascade frontal face solutions available in the OpenCV library. The proposed solution has been checked for efficiency and precision, as well as for the minimum resolution requirements of the resulting facial image. The software works on still images as well as on video sequences from computer webcams and CCTV cameras.</abstract><pub>Division of Signal Processing and Electronic Systems, Poznan University of Technology (DSPES PUT)</pub><doi>10.23919/SPA50552.2020.9241303</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2326-0262 |
ispartof | 2020 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), 2020, p.87-91 |
issn | 2326-0262 2326-0319 |
language | eng |
recordid | cdi_ieee_primary_9241303 |
source | IEEE Xplore All Conference Series |
subjects | anti-virus masks convolutional neural networks COVID-19 Face detection Face recognition Faces Image resolution mask detection Neural networks OpenCV Python programming Software vision system |
title | CCTV based system for detection of anti-virus masks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A12%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=CCTV%20based%20system%20for%20detection%20of%20anti-virus%20masks&rft.btitle=2020%20Signal%20Processing:%20Algorithms,%20Architectures,%20Arrangements,%20and%20Applications%20(SPA)&rft.au=Podbucki,%20Kacper&rft.date=2020-09-23&rft.spage=87&rft.epage=91&rft.pages=87-91&rft.issn=2326-0262&rft.eissn=2326-0319&rft_id=info:doi/10.23919/SPA50552.2020.9241303&rft.eisbn=8362065397&rft.eisbn_list=9788362065394&rft_dat=%3Cieee_CHZPO%3E9241303%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-30824f36843f1f98c9f7ca291da659ecf54168cbc51c636675a3eeaf0d128dbb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9241303&rfr_iscdi=true |