Loading…

Transient simulation of graphene FET gated by electrolyte medium

We present a numerical study on the electrical conduction characteristics of the graphene channel FET with electrolyte medium for gate control. By using the tight-binding formalism to calculate the electronic band structure and the Nernst-Planck-Poisson (NPP) equation to calculate the formation of t...

Full description

Saved in:
Bibliographic Details
Main Authors: Arihori, Koki, Ogawa, Matsuto, Souma, Satofumi, Sato-Iwanaga, Junko, Suzuki, Masa-aki
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 370
container_issue
container_start_page 367
container_title
container_volume
creator Arihori, Koki
Ogawa, Matsuto
Souma, Satofumi
Sato-Iwanaga, Junko
Suzuki, Masa-aki
description We present a numerical study on the electrical conduction characteristics of the graphene channel FET with electrolyte medium for gate control. By using the tight-binding formalism to calculate the electronic band structure and the Nernst-Planck-Poisson (NPP) equation to calculate the formation of the electric double layer at the interface of the ionic liquid, we found that the drain current after the EDL is formed is almost independent of the IL thickness, while the transient behavior is greatly influenced by the thickness of ionic liquid. In addition, we present our simulation results for the case of solid electrolyte gate, where the effect of finite ion concentration in the solid electrolyte has been successfully taken into account appropriately by using the extended NPP equation.
doi_str_mv 10.23919/SISPAD49475.2020.9241691
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9241691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9241691</ieee_id><sourcerecordid>9241691</sourcerecordid><originalsourceid>FETCH-LOGICAL-i269t-b807ded3539ff838bf265dc30f9397abdc08980405dd548a1e9f5e5e25667f993</originalsourceid><addsrcrecordid>eNotj8tKAzEUQKMgWOp8gZv4ATPmndydpb4KBYXWdclMbmpkHmUmXczfK9jVWZ0Dh5AHziohgcPjbrP7XD0rUFZXgglWgVDcAL8iBVinnJHKWSP1NVlwUKbk2tpbUkzTD2OMC2eEdQvytB99PyXsM51Sd259TkNPh0iPoz99Y4_09WVPjz5joPVMscUmj0M7Z6QdhnTu7shN9O2ExYVL8vVnrN_L7cfbZr3alkkYyGXtmA0YpJYQo5OujsLo0EgWQYL1dWiYA8cU0yFo5TxHiBo1Cm2MjQBySe7_uwkRD6cxdX6cD5dn-Qu2qUwg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Transient simulation of graphene FET gated by electrolyte medium</title><source>IEEE Xplore All Conference Series</source><creator>Arihori, Koki ; Ogawa, Matsuto ; Souma, Satofumi ; Sato-Iwanaga, Junko ; Suzuki, Masa-aki</creator><creatorcontrib>Arihori, Koki ; Ogawa, Matsuto ; Souma, Satofumi ; Sato-Iwanaga, Junko ; Suzuki, Masa-aki</creatorcontrib><description>We present a numerical study on the electrical conduction characteristics of the graphene channel FET with electrolyte medium for gate control. By using the tight-binding formalism to calculate the electronic band structure and the Nernst-Planck-Poisson (NPP) equation to calculate the formation of the electric double layer at the interface of the ionic liquid, we found that the drain current after the EDL is formed is almost independent of the IL thickness, while the transient behavior is greatly influenced by the thickness of ionic liquid. In addition, we present our simulation results for the case of solid electrolyte gate, where the effect of finite ion concentration in the solid electrolyte has been successfully taken into account appropriately by using the extended NPP equation.</description><identifier>EISSN: 1946-1577</identifier><identifier>EISBN: 9784863487635</identifier><identifier>EISBN: 4863487630</identifier><identifier>DOI: 10.23919/SISPAD49475.2020.9241691</identifier><language>eng</language><publisher>The Japan Society of Applied Physics</publisher><subject>Electrolytes ; Field effect transistors ; Graphene ; Liquids ; Logic gates ; Mathematical model ; Transient analysis</subject><ispartof>2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2020, p.367-370</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9241691$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9241691$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Arihori, Koki</creatorcontrib><creatorcontrib>Ogawa, Matsuto</creatorcontrib><creatorcontrib>Souma, Satofumi</creatorcontrib><creatorcontrib>Sato-Iwanaga, Junko</creatorcontrib><creatorcontrib>Suzuki, Masa-aki</creatorcontrib><title>Transient simulation of graphene FET gated by electrolyte medium</title><title>2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)</title><addtitle>SISPAD</addtitle><description>We present a numerical study on the electrical conduction characteristics of the graphene channel FET with electrolyte medium for gate control. By using the tight-binding formalism to calculate the electronic band structure and the Nernst-Planck-Poisson (NPP) equation to calculate the formation of the electric double layer at the interface of the ionic liquid, we found that the drain current after the EDL is formed is almost independent of the IL thickness, while the transient behavior is greatly influenced by the thickness of ionic liquid. In addition, we present our simulation results for the case of solid electrolyte gate, where the effect of finite ion concentration in the solid electrolyte has been successfully taken into account appropriately by using the extended NPP equation.</description><subject>Electrolytes</subject><subject>Field effect transistors</subject><subject>Graphene</subject><subject>Liquids</subject><subject>Logic gates</subject><subject>Mathematical model</subject><subject>Transient analysis</subject><issn>1946-1577</issn><isbn>9784863487635</isbn><isbn>4863487630</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tKAzEUQKMgWOp8gZv4ATPmndydpb4KBYXWdclMbmpkHmUmXczfK9jVWZ0Dh5AHziohgcPjbrP7XD0rUFZXgglWgVDcAL8iBVinnJHKWSP1NVlwUKbk2tpbUkzTD2OMC2eEdQvytB99PyXsM51Sd259TkNPh0iPoz99Y4_09WVPjz5joPVMscUmj0M7Z6QdhnTu7shN9O2ExYVL8vVnrN_L7cfbZr3alkkYyGXtmA0YpJYQo5OujsLo0EgWQYL1dWiYA8cU0yFo5TxHiBo1Cm2MjQBySe7_uwkRD6cxdX6cD5dn-Qu2qUwg</recordid><startdate>20200923</startdate><enddate>20200923</enddate><creator>Arihori, Koki</creator><creator>Ogawa, Matsuto</creator><creator>Souma, Satofumi</creator><creator>Sato-Iwanaga, Junko</creator><creator>Suzuki, Masa-aki</creator><general>The Japan Society of Applied Physics</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20200923</creationdate><title>Transient simulation of graphene FET gated by electrolyte medium</title><author>Arihori, Koki ; Ogawa, Matsuto ; Souma, Satofumi ; Sato-Iwanaga, Junko ; Suzuki, Masa-aki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i269t-b807ded3539ff838bf265dc30f9397abdc08980405dd548a1e9f5e5e25667f993</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Electrolytes</topic><topic>Field effect transistors</topic><topic>Graphene</topic><topic>Liquids</topic><topic>Logic gates</topic><topic>Mathematical model</topic><topic>Transient analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Arihori, Koki</creatorcontrib><creatorcontrib>Ogawa, Matsuto</creatorcontrib><creatorcontrib>Souma, Satofumi</creatorcontrib><creatorcontrib>Sato-Iwanaga, Junko</creatorcontrib><creatorcontrib>Suzuki, Masa-aki</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Arihori, Koki</au><au>Ogawa, Matsuto</au><au>Souma, Satofumi</au><au>Sato-Iwanaga, Junko</au><au>Suzuki, Masa-aki</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Transient simulation of graphene FET gated by electrolyte medium</atitle><btitle>2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)</btitle><stitle>SISPAD</stitle><date>2020-09-23</date><risdate>2020</risdate><spage>367</spage><epage>370</epage><pages>367-370</pages><eissn>1946-1577</eissn><eisbn>9784863487635</eisbn><eisbn>4863487630</eisbn><abstract>We present a numerical study on the electrical conduction characteristics of the graphene channel FET with electrolyte medium for gate control. By using the tight-binding formalism to calculate the electronic band structure and the Nernst-Planck-Poisson (NPP) equation to calculate the formation of the electric double layer at the interface of the ionic liquid, we found that the drain current after the EDL is formed is almost independent of the IL thickness, while the transient behavior is greatly influenced by the thickness of ionic liquid. In addition, we present our simulation results for the case of solid electrolyte gate, where the effect of finite ion concentration in the solid electrolyte has been successfully taken into account appropriately by using the extended NPP equation.</abstract><pub>The Japan Society of Applied Physics</pub><doi>10.23919/SISPAD49475.2020.9241691</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1946-1577
ispartof 2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2020, p.367-370
issn 1946-1577
language eng
recordid cdi_ieee_primary_9241691
source IEEE Xplore All Conference Series
subjects Electrolytes
Field effect transistors
Graphene
Liquids
Logic gates
Mathematical model
Transient analysis
title Transient simulation of graphene FET gated by electrolyte medium
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A37%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Transient%20simulation%20of%20graphene%20FET%20gated%20by%20electrolyte%20medium&rft.btitle=2020%20International%20Conference%20on%20Simulation%20of%20Semiconductor%20Processes%20and%20Devices%20(SISPAD)&rft.au=Arihori,%20Koki&rft.date=2020-09-23&rft.spage=367&rft.epage=370&rft.pages=367-370&rft.eissn=1946-1577&rft_id=info:doi/10.23919/SISPAD49475.2020.9241691&rft.eisbn=9784863487635&rft.eisbn_list=4863487630&rft_dat=%3Cieee_CHZPO%3E9241691%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i269t-b807ded3539ff838bf265dc30f9397abdc08980405dd548a1e9f5e5e25667f993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9241691&rfr_iscdi=true