Loading…
Transient simulation of graphene FET gated by electrolyte medium
We present a numerical study on the electrical conduction characteristics of the graphene channel FET with electrolyte medium for gate control. By using the tight-binding formalism to calculate the electronic band structure and the Nernst-Planck-Poisson (NPP) equation to calculate the formation of t...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 370 |
container_issue | |
container_start_page | 367 |
container_title | |
container_volume | |
creator | Arihori, Koki Ogawa, Matsuto Souma, Satofumi Sato-Iwanaga, Junko Suzuki, Masa-aki |
description | We present a numerical study on the electrical conduction characteristics of the graphene channel FET with electrolyte medium for gate control. By using the tight-binding formalism to calculate the electronic band structure and the Nernst-Planck-Poisson (NPP) equation to calculate the formation of the electric double layer at the interface of the ionic liquid, we found that the drain current after the EDL is formed is almost independent of the IL thickness, while the transient behavior is greatly influenced by the thickness of ionic liquid. In addition, we present our simulation results for the case of solid electrolyte gate, where the effect of finite ion concentration in the solid electrolyte has been successfully taken into account appropriately by using the extended NPP equation. |
doi_str_mv | 10.23919/SISPAD49475.2020.9241691 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9241691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9241691</ieee_id><sourcerecordid>9241691</sourcerecordid><originalsourceid>FETCH-LOGICAL-i269t-b807ded3539ff838bf265dc30f9397abdc08980405dd548a1e9f5e5e25667f993</originalsourceid><addsrcrecordid>eNotj8tKAzEUQKMgWOp8gZv4ATPmndydpb4KBYXWdclMbmpkHmUmXczfK9jVWZ0Dh5AHziohgcPjbrP7XD0rUFZXgglWgVDcAL8iBVinnJHKWSP1NVlwUKbk2tpbUkzTD2OMC2eEdQvytB99PyXsM51Sd259TkNPh0iPoz99Y4_09WVPjz5joPVMscUmj0M7Z6QdhnTu7shN9O2ExYVL8vVnrN_L7cfbZr3alkkYyGXtmA0YpJYQo5OujsLo0EgWQYL1dWiYA8cU0yFo5TxHiBo1Cm2MjQBySe7_uwkRD6cxdX6cD5dn-Qu2qUwg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Transient simulation of graphene FET gated by electrolyte medium</title><source>IEEE Xplore All Conference Series</source><creator>Arihori, Koki ; Ogawa, Matsuto ; Souma, Satofumi ; Sato-Iwanaga, Junko ; Suzuki, Masa-aki</creator><creatorcontrib>Arihori, Koki ; Ogawa, Matsuto ; Souma, Satofumi ; Sato-Iwanaga, Junko ; Suzuki, Masa-aki</creatorcontrib><description>We present a numerical study on the electrical conduction characteristics of the graphene channel FET with electrolyte medium for gate control. By using the tight-binding formalism to calculate the electronic band structure and the Nernst-Planck-Poisson (NPP) equation to calculate the formation of the electric double layer at the interface of the ionic liquid, we found that the drain current after the EDL is formed is almost independent of the IL thickness, while the transient behavior is greatly influenced by the thickness of ionic liquid. In addition, we present our simulation results for the case of solid electrolyte gate, where the effect of finite ion concentration in the solid electrolyte has been successfully taken into account appropriately by using the extended NPP equation.</description><identifier>EISSN: 1946-1577</identifier><identifier>EISBN: 9784863487635</identifier><identifier>EISBN: 4863487630</identifier><identifier>DOI: 10.23919/SISPAD49475.2020.9241691</identifier><language>eng</language><publisher>The Japan Society of Applied Physics</publisher><subject>Electrolytes ; Field effect transistors ; Graphene ; Liquids ; Logic gates ; Mathematical model ; Transient analysis</subject><ispartof>2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2020, p.367-370</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9241691$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9241691$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Arihori, Koki</creatorcontrib><creatorcontrib>Ogawa, Matsuto</creatorcontrib><creatorcontrib>Souma, Satofumi</creatorcontrib><creatorcontrib>Sato-Iwanaga, Junko</creatorcontrib><creatorcontrib>Suzuki, Masa-aki</creatorcontrib><title>Transient simulation of graphene FET gated by electrolyte medium</title><title>2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)</title><addtitle>SISPAD</addtitle><description>We present a numerical study on the electrical conduction characteristics of the graphene channel FET with electrolyte medium for gate control. By using the tight-binding formalism to calculate the electronic band structure and the Nernst-Planck-Poisson (NPP) equation to calculate the formation of the electric double layer at the interface of the ionic liquid, we found that the drain current after the EDL is formed is almost independent of the IL thickness, while the transient behavior is greatly influenced by the thickness of ionic liquid. In addition, we present our simulation results for the case of solid electrolyte gate, where the effect of finite ion concentration in the solid electrolyte has been successfully taken into account appropriately by using the extended NPP equation.</description><subject>Electrolytes</subject><subject>Field effect transistors</subject><subject>Graphene</subject><subject>Liquids</subject><subject>Logic gates</subject><subject>Mathematical model</subject><subject>Transient analysis</subject><issn>1946-1577</issn><isbn>9784863487635</isbn><isbn>4863487630</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tKAzEUQKMgWOp8gZv4ATPmndydpb4KBYXWdclMbmpkHmUmXczfK9jVWZ0Dh5AHziohgcPjbrP7XD0rUFZXgglWgVDcAL8iBVinnJHKWSP1NVlwUKbk2tpbUkzTD2OMC2eEdQvytB99PyXsM51Sd259TkNPh0iPoz99Y4_09WVPjz5joPVMscUmj0M7Z6QdhnTu7shN9O2ExYVL8vVnrN_L7cfbZr3alkkYyGXtmA0YpJYQo5OujsLo0EgWQYL1dWiYA8cU0yFo5TxHiBo1Cm2MjQBySe7_uwkRD6cxdX6cD5dn-Qu2qUwg</recordid><startdate>20200923</startdate><enddate>20200923</enddate><creator>Arihori, Koki</creator><creator>Ogawa, Matsuto</creator><creator>Souma, Satofumi</creator><creator>Sato-Iwanaga, Junko</creator><creator>Suzuki, Masa-aki</creator><general>The Japan Society of Applied Physics</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20200923</creationdate><title>Transient simulation of graphene FET gated by electrolyte medium</title><author>Arihori, Koki ; Ogawa, Matsuto ; Souma, Satofumi ; Sato-Iwanaga, Junko ; Suzuki, Masa-aki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i269t-b807ded3539ff838bf265dc30f9397abdc08980405dd548a1e9f5e5e25667f993</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Electrolytes</topic><topic>Field effect transistors</topic><topic>Graphene</topic><topic>Liquids</topic><topic>Logic gates</topic><topic>Mathematical model</topic><topic>Transient analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Arihori, Koki</creatorcontrib><creatorcontrib>Ogawa, Matsuto</creatorcontrib><creatorcontrib>Souma, Satofumi</creatorcontrib><creatorcontrib>Sato-Iwanaga, Junko</creatorcontrib><creatorcontrib>Suzuki, Masa-aki</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Arihori, Koki</au><au>Ogawa, Matsuto</au><au>Souma, Satofumi</au><au>Sato-Iwanaga, Junko</au><au>Suzuki, Masa-aki</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Transient simulation of graphene FET gated by electrolyte medium</atitle><btitle>2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)</btitle><stitle>SISPAD</stitle><date>2020-09-23</date><risdate>2020</risdate><spage>367</spage><epage>370</epage><pages>367-370</pages><eissn>1946-1577</eissn><eisbn>9784863487635</eisbn><eisbn>4863487630</eisbn><abstract>We present a numerical study on the electrical conduction characteristics of the graphene channel FET with electrolyte medium for gate control. By using the tight-binding formalism to calculate the electronic band structure and the Nernst-Planck-Poisson (NPP) equation to calculate the formation of the electric double layer at the interface of the ionic liquid, we found that the drain current after the EDL is formed is almost independent of the IL thickness, while the transient behavior is greatly influenced by the thickness of ionic liquid. In addition, we present our simulation results for the case of solid electrolyte gate, where the effect of finite ion concentration in the solid electrolyte has been successfully taken into account appropriately by using the extended NPP equation.</abstract><pub>The Japan Society of Applied Physics</pub><doi>10.23919/SISPAD49475.2020.9241691</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 1946-1577 |
ispartof | 2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2020, p.367-370 |
issn | 1946-1577 |
language | eng |
recordid | cdi_ieee_primary_9241691 |
source | IEEE Xplore All Conference Series |
subjects | Electrolytes Field effect transistors Graphene Liquids Logic gates Mathematical model Transient analysis |
title | Transient simulation of graphene FET gated by electrolyte medium |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A37%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Transient%20simulation%20of%20graphene%20FET%20gated%20by%20electrolyte%20medium&rft.btitle=2020%20International%20Conference%20on%20Simulation%20of%20Semiconductor%20Processes%20and%20Devices%20(SISPAD)&rft.au=Arihori,%20Koki&rft.date=2020-09-23&rft.spage=367&rft.epage=370&rft.pages=367-370&rft.eissn=1946-1577&rft_id=info:doi/10.23919/SISPAD49475.2020.9241691&rft.eisbn=9784863487635&rft.eisbn_list=4863487630&rft_dat=%3Cieee_CHZPO%3E9241691%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i269t-b807ded3539ff838bf265dc30f9397abdc08980405dd548a1e9f5e5e25667f993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9241691&rfr_iscdi=true |