Loading…
Optimal Bidding Strategy of DER Aggregator Considering Dual Uncertainty via Information Gap Decision Theory
Distributed energy resources especially wind and photovoltaic power, and demand response are highly valued in recent years for their advantages in environmental protection, sustainable development, and so on. However, their volatility poses double risks to the DER aggregator when formulating a profi...
Saved in:
Published in: | IEEE transactions on industry applications 2021-01, Vol.57 (1), p.158-169 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-67a86cfd1ae8b403c71ab2d875db90ce825a425e5b54a2acc9f34c897eb8599e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-67a86cfd1ae8b403c71ab2d875db90ce825a425e5b54a2acc9f34c897eb8599e3 |
container_end_page | 169 |
container_issue | 1 |
container_start_page | 158 |
container_title | IEEE transactions on industry applications |
container_volume | 57 |
creator | Lu, Xiaoxing Li, Kangping Wang, Fei Mi, Zengqiang Sun, Rongfu Wang, Xuanyuan Lai, Jingang |
description | Distributed energy resources especially wind and photovoltaic power, and demand response are highly valued in recent years for their advantages in environmental protection, sustainable development, and so on. However, their volatility poses double risks to the DER aggregator when formulating a profitable bidding strategy and schedule scheme. To this end, first, this article proposes an information gap decision theory-based optimal bidding strategy to model the dual uncertainties confronted by the DER aggregator without knowing the specific distribution pattern of uncertainties. Second, the DER aggregator is assumed to be risk-averse or opportunity-seeking, and the corresponding strategies could be obtained. The former comes up with a robust strategy under severe uncertain circumstances, and the latter presents a profit-maximization scheme while enduring more risks. The validity of the proposed method is examined using the dataset from the Thames valley vision project; the obtained results demonstrate that proper adjustment on aggregator's bidding strategy could be achieved based on its preference for high-profit or stability, which is also applicable for other market entities. |
doi_str_mv | 10.1109/TIA.2020.3035553 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9247472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9247472</ieee_id><sourcerecordid>2474854887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-67a86cfd1ae8b403c71ab2d875db90ce825a425e5b54a2acc9f34c897eb8599e3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKfvgi8BnzuTJlmTx7nNORgMdHsOaXpbM7dmppnQf2_Lhk-XA985Fz6EHikZUUrUy2Y5GaUkJSNGmBCCXaEBVUwlio2zazQgRLFEKcVv0V3T7AihXFA-QN_rY3QHs8evrihcXeHPGEyEqsW-xLP5B55UVYDKRB_w1NeNKyD02OzUdba1hRCNq2OLf53By7r04WCi8zVemCOegXVNHzZf4EN7j25Ks2_g4XKHaPs230zfk9V6sZxOVollTMZknBk5tmVBDcicE2YzavK0kJkockUsyFQYngoQueAmNdaqknErVQa5FEoBG6Ln8-4x-J8TNFHv_CnU3Uud8oxLwaXMOoqcKRt80wQo9TF0JkKrKdG9Ut0p1b1SfVHaVZ7OFQcA_7jqR7OU_QHLZXL-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474854887</pqid></control><display><type>article</type><title>Optimal Bidding Strategy of DER Aggregator Considering Dual Uncertainty via Information Gap Decision Theory</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lu, Xiaoxing ; Li, Kangping ; Wang, Fei ; Mi, Zengqiang ; Sun, Rongfu ; Wang, Xuanyuan ; Lai, Jingang</creator><creatorcontrib>Lu, Xiaoxing ; Li, Kangping ; Wang, Fei ; Mi, Zengqiang ; Sun, Rongfu ; Wang, Xuanyuan ; Lai, Jingang</creatorcontrib><description>Distributed energy resources especially wind and photovoltaic power, and demand response are highly valued in recent years for their advantages in environmental protection, sustainable development, and so on. However, their volatility poses double risks to the DER aggregator when formulating a profitable bidding strategy and schedule scheme. To this end, first, this article proposes an information gap decision theory-based optimal bidding strategy to model the dual uncertainties confronted by the DER aggregator without knowing the specific distribution pattern of uncertainties. Second, the DER aggregator is assumed to be risk-averse or opportunity-seeking, and the corresponding strategies could be obtained. The former comes up with a robust strategy under severe uncertain circumstances, and the latter presents a profit-maximization scheme while enduring more risks. The validity of the proposed method is examined using the dataset from the Thames valley vision project; the obtained results demonstrate that proper adjustment on aggregator's bidding strategy could be achieved based on its preference for high-profit or stability, which is also applicable for other market entities.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2020.3035553</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Batteries ; Decision theory ; Demand response (DR) ; distributed energy resources (DER) aggregator ; Distributed generation ; Energy sources ; energy storage ; Environmental protection ; information gap decision theory (IGDT) ; Load management ; Microgrids ; Optimization ; Photovoltaic systems ; Schedules ; Strategy ; Sustainable development ; Uncertainty ; Volatility</subject><ispartof>IEEE transactions on industry applications, 2021-01, Vol.57 (1), p.158-169</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-67a86cfd1ae8b403c71ab2d875db90ce825a425e5b54a2acc9f34c897eb8599e3</citedby><cites>FETCH-LOGICAL-c338t-67a86cfd1ae8b403c71ab2d875db90ce825a425e5b54a2acc9f34c897eb8599e3</cites><orcidid>0000-0003-0487-4445 ; 0000-0002-9046-7127 ; 0000-0002-7332-9726</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9247472$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Lu, Xiaoxing</creatorcontrib><creatorcontrib>Li, Kangping</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Mi, Zengqiang</creatorcontrib><creatorcontrib>Sun, Rongfu</creatorcontrib><creatorcontrib>Wang, Xuanyuan</creatorcontrib><creatorcontrib>Lai, Jingang</creatorcontrib><title>Optimal Bidding Strategy of DER Aggregator Considering Dual Uncertainty via Information Gap Decision Theory</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>Distributed energy resources especially wind and photovoltaic power, and demand response are highly valued in recent years for their advantages in environmental protection, sustainable development, and so on. However, their volatility poses double risks to the DER aggregator when formulating a profitable bidding strategy and schedule scheme. To this end, first, this article proposes an information gap decision theory-based optimal bidding strategy to model the dual uncertainties confronted by the DER aggregator without knowing the specific distribution pattern of uncertainties. Second, the DER aggregator is assumed to be risk-averse or opportunity-seeking, and the corresponding strategies could be obtained. The former comes up with a robust strategy under severe uncertain circumstances, and the latter presents a profit-maximization scheme while enduring more risks. The validity of the proposed method is examined using the dataset from the Thames valley vision project; the obtained results demonstrate that proper adjustment on aggregator's bidding strategy could be achieved based on its preference for high-profit or stability, which is also applicable for other market entities.</description><subject>Batteries</subject><subject>Decision theory</subject><subject>Demand response (DR)</subject><subject>distributed energy resources (DER) aggregator</subject><subject>Distributed generation</subject><subject>Energy sources</subject><subject>energy storage</subject><subject>Environmental protection</subject><subject>information gap decision theory (IGDT)</subject><subject>Load management</subject><subject>Microgrids</subject><subject>Optimization</subject><subject>Photovoltaic systems</subject><subject>Schedules</subject><subject>Strategy</subject><subject>Sustainable development</subject><subject>Uncertainty</subject><subject>Volatility</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYMoOKfvgi8BnzuTJlmTx7nNORgMdHsOaXpbM7dmppnQf2_Lhk-XA985Fz6EHikZUUrUy2Y5GaUkJSNGmBCCXaEBVUwlio2zazQgRLFEKcVv0V3T7AihXFA-QN_rY3QHs8evrihcXeHPGEyEqsW-xLP5B55UVYDKRB_w1NeNKyD02OzUdba1hRCNq2OLf53By7r04WCi8zVemCOegXVNHzZf4EN7j25Ks2_g4XKHaPs230zfk9V6sZxOVollTMZknBk5tmVBDcicE2YzavK0kJkockUsyFQYngoQueAmNdaqknErVQa5FEoBG6Ln8-4x-J8TNFHv_CnU3Uud8oxLwaXMOoqcKRt80wQo9TF0JkKrKdG9Ut0p1b1SfVHaVZ7OFQcA_7jqR7OU_QHLZXL-</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Lu, Xiaoxing</creator><creator>Li, Kangping</creator><creator>Wang, Fei</creator><creator>Mi, Zengqiang</creator><creator>Sun, Rongfu</creator><creator>Wang, Xuanyuan</creator><creator>Lai, Jingang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0487-4445</orcidid><orcidid>https://orcid.org/0000-0002-9046-7127</orcidid><orcidid>https://orcid.org/0000-0002-7332-9726</orcidid></search><sort><creationdate>202101</creationdate><title>Optimal Bidding Strategy of DER Aggregator Considering Dual Uncertainty via Information Gap Decision Theory</title><author>Lu, Xiaoxing ; Li, Kangping ; Wang, Fei ; Mi, Zengqiang ; Sun, Rongfu ; Wang, Xuanyuan ; Lai, Jingang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-67a86cfd1ae8b403c71ab2d875db90ce825a425e5b54a2acc9f34c897eb8599e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Batteries</topic><topic>Decision theory</topic><topic>Demand response (DR)</topic><topic>distributed energy resources (DER) aggregator</topic><topic>Distributed generation</topic><topic>Energy sources</topic><topic>energy storage</topic><topic>Environmental protection</topic><topic>information gap decision theory (IGDT)</topic><topic>Load management</topic><topic>Microgrids</topic><topic>Optimization</topic><topic>Photovoltaic systems</topic><topic>Schedules</topic><topic>Strategy</topic><topic>Sustainable development</topic><topic>Uncertainty</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Xiaoxing</creatorcontrib><creatorcontrib>Li, Kangping</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Mi, Zengqiang</creatorcontrib><creatorcontrib>Sun, Rongfu</creatorcontrib><creatorcontrib>Wang, Xuanyuan</creatorcontrib><creatorcontrib>Lai, Jingang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Xiaoxing</au><au>Li, Kangping</au><au>Wang, Fei</au><au>Mi, Zengqiang</au><au>Sun, Rongfu</au><au>Wang, Xuanyuan</au><au>Lai, Jingang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Bidding Strategy of DER Aggregator Considering Dual Uncertainty via Information Gap Decision Theory</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2021-01</date><risdate>2021</risdate><volume>57</volume><issue>1</issue><spage>158</spage><epage>169</epage><pages>158-169</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>Distributed energy resources especially wind and photovoltaic power, and demand response are highly valued in recent years for their advantages in environmental protection, sustainable development, and so on. However, their volatility poses double risks to the DER aggregator when formulating a profitable bidding strategy and schedule scheme. To this end, first, this article proposes an information gap decision theory-based optimal bidding strategy to model the dual uncertainties confronted by the DER aggregator without knowing the specific distribution pattern of uncertainties. Second, the DER aggregator is assumed to be risk-averse or opportunity-seeking, and the corresponding strategies could be obtained. The former comes up with a robust strategy under severe uncertain circumstances, and the latter presents a profit-maximization scheme while enduring more risks. The validity of the proposed method is examined using the dataset from the Thames valley vision project; the obtained results demonstrate that proper adjustment on aggregator's bidding strategy could be achieved based on its preference for high-profit or stability, which is also applicable for other market entities.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2020.3035553</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0487-4445</orcidid><orcidid>https://orcid.org/0000-0002-9046-7127</orcidid><orcidid>https://orcid.org/0000-0002-7332-9726</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0093-9994 |
ispartof | IEEE transactions on industry applications, 2021-01, Vol.57 (1), p.158-169 |
issn | 0093-9994 1939-9367 |
language | eng |
recordid | cdi_ieee_primary_9247472 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Batteries Decision theory Demand response (DR) distributed energy resources (DER) aggregator Distributed generation Energy sources energy storage Environmental protection information gap decision theory (IGDT) Load management Microgrids Optimization Photovoltaic systems Schedules Strategy Sustainable development Uncertainty Volatility |
title | Optimal Bidding Strategy of DER Aggregator Considering Dual Uncertainty via Information Gap Decision Theory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A42%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Bidding%20Strategy%20of%20DER%20Aggregator%20Considering%20Dual%20Uncertainty%20via%20Information%20Gap%20Decision%20Theory&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Lu,%20Xiaoxing&rft.date=2021-01&rft.volume=57&rft.issue=1&rft.spage=158&rft.epage=169&rft.pages=158-169&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2020.3035553&rft_dat=%3Cproquest_ieee_%3E2474854887%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-67a86cfd1ae8b403c71ab2d875db90ce825a425e5b54a2acc9f34c897eb8599e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2474854887&rft_id=info:pmid/&rft_ieee_id=9247472&rfr_iscdi=true |