Loading…

Optimal Bidding Strategy of DER Aggregator Considering Dual Uncertainty via Information Gap Decision Theory

Distributed energy resources especially wind and photovoltaic power, and demand response are highly valued in recent years for their advantages in environmental protection, sustainable development, and so on. However, their volatility poses double risks to the DER aggregator when formulating a profi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industry applications 2021-01, Vol.57 (1), p.158-169
Main Authors: Lu, Xiaoxing, Li, Kangping, Wang, Fei, Mi, Zengqiang, Sun, Rongfu, Wang, Xuanyuan, Lai, Jingang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-67a86cfd1ae8b403c71ab2d875db90ce825a425e5b54a2acc9f34c897eb8599e3
cites cdi_FETCH-LOGICAL-c338t-67a86cfd1ae8b403c71ab2d875db90ce825a425e5b54a2acc9f34c897eb8599e3
container_end_page 169
container_issue 1
container_start_page 158
container_title IEEE transactions on industry applications
container_volume 57
creator Lu, Xiaoxing
Li, Kangping
Wang, Fei
Mi, Zengqiang
Sun, Rongfu
Wang, Xuanyuan
Lai, Jingang
description Distributed energy resources especially wind and photovoltaic power, and demand response are highly valued in recent years for their advantages in environmental protection, sustainable development, and so on. However, their volatility poses double risks to the DER aggregator when formulating a profitable bidding strategy and schedule scheme. To this end, first, this article proposes an information gap decision theory-based optimal bidding strategy to model the dual uncertainties confronted by the DER aggregator without knowing the specific distribution pattern of uncertainties. Second, the DER aggregator is assumed to be risk-averse or opportunity-seeking, and the corresponding strategies could be obtained. The former comes up with a robust strategy under severe uncertain circumstances, and the latter presents a profit-maximization scheme while enduring more risks. The validity of the proposed method is examined using the dataset from the Thames valley vision project; the obtained results demonstrate that proper adjustment on aggregator's bidding strategy could be achieved based on its preference for high-profit or stability, which is also applicable for other market entities.
doi_str_mv 10.1109/TIA.2020.3035553
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9247472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9247472</ieee_id><sourcerecordid>2474854887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-67a86cfd1ae8b403c71ab2d875db90ce825a425e5b54a2acc9f34c897eb8599e3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKfvgi8BnzuTJlmTx7nNORgMdHsOaXpbM7dmppnQf2_Lhk-XA985Fz6EHikZUUrUy2Y5GaUkJSNGmBCCXaEBVUwlio2zazQgRLFEKcVv0V3T7AihXFA-QN_rY3QHs8evrihcXeHPGEyEqsW-xLP5B55UVYDKRB_w1NeNKyD02OzUdba1hRCNq2OLf53By7r04WCi8zVemCOegXVNHzZf4EN7j25Ks2_g4XKHaPs230zfk9V6sZxOVollTMZknBk5tmVBDcicE2YzavK0kJkockUsyFQYngoQueAmNdaqknErVQa5FEoBG6Ln8-4x-J8TNFHv_CnU3Uud8oxLwaXMOoqcKRt80wQo9TF0JkKrKdG9Ut0p1b1SfVHaVZ7OFQcA_7jqR7OU_QHLZXL-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474854887</pqid></control><display><type>article</type><title>Optimal Bidding Strategy of DER Aggregator Considering Dual Uncertainty via Information Gap Decision Theory</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lu, Xiaoxing ; Li, Kangping ; Wang, Fei ; Mi, Zengqiang ; Sun, Rongfu ; Wang, Xuanyuan ; Lai, Jingang</creator><creatorcontrib>Lu, Xiaoxing ; Li, Kangping ; Wang, Fei ; Mi, Zengqiang ; Sun, Rongfu ; Wang, Xuanyuan ; Lai, Jingang</creatorcontrib><description>Distributed energy resources especially wind and photovoltaic power, and demand response are highly valued in recent years for their advantages in environmental protection, sustainable development, and so on. However, their volatility poses double risks to the DER aggregator when formulating a profitable bidding strategy and schedule scheme. To this end, first, this article proposes an information gap decision theory-based optimal bidding strategy to model the dual uncertainties confronted by the DER aggregator without knowing the specific distribution pattern of uncertainties. Second, the DER aggregator is assumed to be risk-averse or opportunity-seeking, and the corresponding strategies could be obtained. The former comes up with a robust strategy under severe uncertain circumstances, and the latter presents a profit-maximization scheme while enduring more risks. The validity of the proposed method is examined using the dataset from the Thames valley vision project; the obtained results demonstrate that proper adjustment on aggregator's bidding strategy could be achieved based on its preference for high-profit or stability, which is also applicable for other market entities.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2020.3035553</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Batteries ; Decision theory ; Demand response (DR) ; distributed energy resources (DER) aggregator ; Distributed generation ; Energy sources ; energy storage ; Environmental protection ; information gap decision theory (IGDT) ; Load management ; Microgrids ; Optimization ; Photovoltaic systems ; Schedules ; Strategy ; Sustainable development ; Uncertainty ; Volatility</subject><ispartof>IEEE transactions on industry applications, 2021-01, Vol.57 (1), p.158-169</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-67a86cfd1ae8b403c71ab2d875db90ce825a425e5b54a2acc9f34c897eb8599e3</citedby><cites>FETCH-LOGICAL-c338t-67a86cfd1ae8b403c71ab2d875db90ce825a425e5b54a2acc9f34c897eb8599e3</cites><orcidid>0000-0003-0487-4445 ; 0000-0002-9046-7127 ; 0000-0002-7332-9726</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9247472$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Lu, Xiaoxing</creatorcontrib><creatorcontrib>Li, Kangping</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Mi, Zengqiang</creatorcontrib><creatorcontrib>Sun, Rongfu</creatorcontrib><creatorcontrib>Wang, Xuanyuan</creatorcontrib><creatorcontrib>Lai, Jingang</creatorcontrib><title>Optimal Bidding Strategy of DER Aggregator Considering Dual Uncertainty via Information Gap Decision Theory</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>Distributed energy resources especially wind and photovoltaic power, and demand response are highly valued in recent years for their advantages in environmental protection, sustainable development, and so on. However, their volatility poses double risks to the DER aggregator when formulating a profitable bidding strategy and schedule scheme. To this end, first, this article proposes an information gap decision theory-based optimal bidding strategy to model the dual uncertainties confronted by the DER aggregator without knowing the specific distribution pattern of uncertainties. Second, the DER aggregator is assumed to be risk-averse or opportunity-seeking, and the corresponding strategies could be obtained. The former comes up with a robust strategy under severe uncertain circumstances, and the latter presents a profit-maximization scheme while enduring more risks. The validity of the proposed method is examined using the dataset from the Thames valley vision project; the obtained results demonstrate that proper adjustment on aggregator's bidding strategy could be achieved based on its preference for high-profit or stability, which is also applicable for other market entities.</description><subject>Batteries</subject><subject>Decision theory</subject><subject>Demand response (DR)</subject><subject>distributed energy resources (DER) aggregator</subject><subject>Distributed generation</subject><subject>Energy sources</subject><subject>energy storage</subject><subject>Environmental protection</subject><subject>information gap decision theory (IGDT)</subject><subject>Load management</subject><subject>Microgrids</subject><subject>Optimization</subject><subject>Photovoltaic systems</subject><subject>Schedules</subject><subject>Strategy</subject><subject>Sustainable development</subject><subject>Uncertainty</subject><subject>Volatility</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYMoOKfvgi8BnzuTJlmTx7nNORgMdHsOaXpbM7dmppnQf2_Lhk-XA985Fz6EHikZUUrUy2Y5GaUkJSNGmBCCXaEBVUwlio2zazQgRLFEKcVv0V3T7AihXFA-QN_rY3QHs8evrihcXeHPGEyEqsW-xLP5B55UVYDKRB_w1NeNKyD02OzUdba1hRCNq2OLf53By7r04WCi8zVemCOegXVNHzZf4EN7j25Ks2_g4XKHaPs230zfk9V6sZxOVollTMZknBk5tmVBDcicE2YzavK0kJkockUsyFQYngoQueAmNdaqknErVQa5FEoBG6Ln8-4x-J8TNFHv_CnU3Uud8oxLwaXMOoqcKRt80wQo9TF0JkKrKdG9Ut0p1b1SfVHaVZ7OFQcA_7jqR7OU_QHLZXL-</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Lu, Xiaoxing</creator><creator>Li, Kangping</creator><creator>Wang, Fei</creator><creator>Mi, Zengqiang</creator><creator>Sun, Rongfu</creator><creator>Wang, Xuanyuan</creator><creator>Lai, Jingang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0487-4445</orcidid><orcidid>https://orcid.org/0000-0002-9046-7127</orcidid><orcidid>https://orcid.org/0000-0002-7332-9726</orcidid></search><sort><creationdate>202101</creationdate><title>Optimal Bidding Strategy of DER Aggregator Considering Dual Uncertainty via Information Gap Decision Theory</title><author>Lu, Xiaoxing ; Li, Kangping ; Wang, Fei ; Mi, Zengqiang ; Sun, Rongfu ; Wang, Xuanyuan ; Lai, Jingang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-67a86cfd1ae8b403c71ab2d875db90ce825a425e5b54a2acc9f34c897eb8599e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Batteries</topic><topic>Decision theory</topic><topic>Demand response (DR)</topic><topic>distributed energy resources (DER) aggregator</topic><topic>Distributed generation</topic><topic>Energy sources</topic><topic>energy storage</topic><topic>Environmental protection</topic><topic>information gap decision theory (IGDT)</topic><topic>Load management</topic><topic>Microgrids</topic><topic>Optimization</topic><topic>Photovoltaic systems</topic><topic>Schedules</topic><topic>Strategy</topic><topic>Sustainable development</topic><topic>Uncertainty</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Xiaoxing</creatorcontrib><creatorcontrib>Li, Kangping</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Mi, Zengqiang</creatorcontrib><creatorcontrib>Sun, Rongfu</creatorcontrib><creatorcontrib>Wang, Xuanyuan</creatorcontrib><creatorcontrib>Lai, Jingang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Xiaoxing</au><au>Li, Kangping</au><au>Wang, Fei</au><au>Mi, Zengqiang</au><au>Sun, Rongfu</au><au>Wang, Xuanyuan</au><au>Lai, Jingang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Bidding Strategy of DER Aggregator Considering Dual Uncertainty via Information Gap Decision Theory</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2021-01</date><risdate>2021</risdate><volume>57</volume><issue>1</issue><spage>158</spage><epage>169</epage><pages>158-169</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>Distributed energy resources especially wind and photovoltaic power, and demand response are highly valued in recent years for their advantages in environmental protection, sustainable development, and so on. However, their volatility poses double risks to the DER aggregator when formulating a profitable bidding strategy and schedule scheme. To this end, first, this article proposes an information gap decision theory-based optimal bidding strategy to model the dual uncertainties confronted by the DER aggregator without knowing the specific distribution pattern of uncertainties. Second, the DER aggregator is assumed to be risk-averse or opportunity-seeking, and the corresponding strategies could be obtained. The former comes up with a robust strategy under severe uncertain circumstances, and the latter presents a profit-maximization scheme while enduring more risks. The validity of the proposed method is examined using the dataset from the Thames valley vision project; the obtained results demonstrate that proper adjustment on aggregator's bidding strategy could be achieved based on its preference for high-profit or stability, which is also applicable for other market entities.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2020.3035553</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0487-4445</orcidid><orcidid>https://orcid.org/0000-0002-9046-7127</orcidid><orcidid>https://orcid.org/0000-0002-7332-9726</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 2021-01, Vol.57 (1), p.158-169
issn 0093-9994
1939-9367
language eng
recordid cdi_ieee_primary_9247472
source IEEE Electronic Library (IEL) Journals
subjects Batteries
Decision theory
Demand response (DR)
distributed energy resources (DER) aggregator
Distributed generation
Energy sources
energy storage
Environmental protection
information gap decision theory (IGDT)
Load management
Microgrids
Optimization
Photovoltaic systems
Schedules
Strategy
Sustainable development
Uncertainty
Volatility
title Optimal Bidding Strategy of DER Aggregator Considering Dual Uncertainty via Information Gap Decision Theory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A42%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Bidding%20Strategy%20of%20DER%20Aggregator%20Considering%20Dual%20Uncertainty%20via%20Information%20Gap%20Decision%20Theory&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Lu,%20Xiaoxing&rft.date=2021-01&rft.volume=57&rft.issue=1&rft.spage=158&rft.epage=169&rft.pages=158-169&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2020.3035553&rft_dat=%3Cproquest_ieee_%3E2474854887%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-67a86cfd1ae8b403c71ab2d875db90ce825a425e5b54a2acc9f34c897eb8599e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2474854887&rft_id=info:pmid/&rft_ieee_id=9247472&rfr_iscdi=true