Loading…

Deep Learning Suggestions for Analyzing Student Activity Data

In this study, eight data are collected data. Eight data were obtained through surveys and interviews, and some data were analyzed after being obtained through smart wearable devices. Traditional learning model amount are effectively learned through algorithms with the help of various sensors and Ar...

Full description

Saved in:
Bibliographic Details
Main Authors: Park, Hyeonghu, Lee, Tacklim, Cho, Keonhee, Jang, Hyeonwoo, Park, Sehyun
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2
container_issue
container_start_page 1
container_title
container_volume
creator Park, Hyeonghu
Lee, Tacklim
Cho, Keonhee
Jang, Hyeonwoo
Park, Sehyun
description In this study, eight data are collected data. Eight data were obtained through surveys and interviews, and some data were analyzed after being obtained through smart wearable devices. Traditional learning model amount are effectively learned through algorithms with the help of various sensors and Artificial Intelligent. Therefore, this study suggests learning activities based on the deep-learning instruction model as a method for teaching to improve data analytic thinking ability. Models analyze learning activity data design a model of the data through the observation of a given data.
doi_str_mv 10.1109/ICCE-Taiwan49838.2020.9258065
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9258065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9258065</ieee_id><sourcerecordid>9258065</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-8e22939d2a519271f83096f5ecd7545c3bd8d77623d7a846d1b0c35cb2bd42083</originalsourceid><addsrcrecordid>eNotj0FLwzAYhqMgOGZ_gZdcPLZ--dI0-Q4eSjd1UPDgPI-0SUtkdqPNlPrrFd3h5Tk88MDL2J2ATAig-01VrdOtDV92yMlIkyEgZITKQKEuWELaCI2_k0Tyki1QaZUaNPk1S6bpHQCkIABBC_aw8v7Ia2_HIQw9fz31vZ9iOAwT7w4jLwe7n7__TDw5P0RetjF8hjjzlY32hl11dj_55Mwle3tcb6vntH552lRlnQYEGVPjEUmSQ6sEoRadkUBFp3zrtMpVKxtnnNYFSqetyQsnGmilahtsXI5g5JLd_neD9353HMOHHefd-bD8AREfS_I</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Deep Learning Suggestions for Analyzing Student Activity Data</title><source>IEEE Xplore All Conference Series</source><creator>Park, Hyeonghu ; Lee, Tacklim ; Cho, Keonhee ; Jang, Hyeonwoo ; Park, Sehyun</creator><creatorcontrib>Park, Hyeonghu ; Lee, Tacklim ; Cho, Keonhee ; Jang, Hyeonwoo ; Park, Sehyun</creatorcontrib><description>In this study, eight data are collected data. Eight data were obtained through surveys and interviews, and some data were analyzed after being obtained through smart wearable devices. Traditional learning model amount are effectively learned through algorithms with the help of various sensors and Artificial Intelligent. Therefore, this study suggests learning activities based on the deep-learning instruction model as a method for teaching to improve data analytic thinking ability. Models analyze learning activity data design a model of the data through the observation of a given data.</description><identifier>EISSN: 2575-8284</identifier><identifier>EISBN: 9781728173993</identifier><identifier>EISBN: 172817399X</identifier><identifier>DOI: 10.1109/ICCE-Taiwan49838.2020.9258065</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Data analysis ; Data models ; Data visualization ; Deep learning ; Education ; Intelligent sensors</subject><ispartof>2020 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan), 2020, p.1-2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9258065$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9258065$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Park, Hyeonghu</creatorcontrib><creatorcontrib>Lee, Tacklim</creatorcontrib><creatorcontrib>Cho, Keonhee</creatorcontrib><creatorcontrib>Jang, Hyeonwoo</creatorcontrib><creatorcontrib>Park, Sehyun</creatorcontrib><title>Deep Learning Suggestions for Analyzing Student Activity Data</title><title>2020 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)</title><addtitle>ICCE-Taiwan</addtitle><description>In this study, eight data are collected data. Eight data were obtained through surveys and interviews, and some data were analyzed after being obtained through smart wearable devices. Traditional learning model amount are effectively learned through algorithms with the help of various sensors and Artificial Intelligent. Therefore, this study suggests learning activities based on the deep-learning instruction model as a method for teaching to improve data analytic thinking ability. Models analyze learning activity data design a model of the data through the observation of a given data.</description><subject>Analytical models</subject><subject>Data analysis</subject><subject>Data models</subject><subject>Data visualization</subject><subject>Deep learning</subject><subject>Education</subject><subject>Intelligent sensors</subject><issn>2575-8284</issn><isbn>9781728173993</isbn><isbn>172817399X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj0FLwzAYhqMgOGZ_gZdcPLZ--dI0-Q4eSjd1UPDgPI-0SUtkdqPNlPrrFd3h5Tk88MDL2J2ATAig-01VrdOtDV92yMlIkyEgZITKQKEuWELaCI2_k0Tyki1QaZUaNPk1S6bpHQCkIABBC_aw8v7Ia2_HIQw9fz31vZ9iOAwT7w4jLwe7n7__TDw5P0RetjF8hjjzlY32hl11dj_55Mwle3tcb6vntH552lRlnQYEGVPjEUmSQ6sEoRadkUBFp3zrtMpVKxtnnNYFSqetyQsnGmilahtsXI5g5JLd_neD9353HMOHHefd-bD8AREfS_I</recordid><startdate>20200928</startdate><enddate>20200928</enddate><creator>Park, Hyeonghu</creator><creator>Lee, Tacklim</creator><creator>Cho, Keonhee</creator><creator>Jang, Hyeonwoo</creator><creator>Park, Sehyun</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20200928</creationdate><title>Deep Learning Suggestions for Analyzing Student Activity Data</title><author>Park, Hyeonghu ; Lee, Tacklim ; Cho, Keonhee ; Jang, Hyeonwoo ; Park, Sehyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-8e22939d2a519271f83096f5ecd7545c3bd8d77623d7a846d1b0c35cb2bd42083</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical models</topic><topic>Data analysis</topic><topic>Data models</topic><topic>Data visualization</topic><topic>Deep learning</topic><topic>Education</topic><topic>Intelligent sensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Park, Hyeonghu</creatorcontrib><creatorcontrib>Lee, Tacklim</creatorcontrib><creatorcontrib>Cho, Keonhee</creatorcontrib><creatorcontrib>Jang, Hyeonwoo</creatorcontrib><creatorcontrib>Park, Sehyun</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Park, Hyeonghu</au><au>Lee, Tacklim</au><au>Cho, Keonhee</au><au>Jang, Hyeonwoo</au><au>Park, Sehyun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Deep Learning Suggestions for Analyzing Student Activity Data</atitle><btitle>2020 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)</btitle><stitle>ICCE-Taiwan</stitle><date>2020-09-28</date><risdate>2020</risdate><spage>1</spage><epage>2</epage><pages>1-2</pages><eissn>2575-8284</eissn><eisbn>9781728173993</eisbn><eisbn>172817399X</eisbn><abstract>In this study, eight data are collected data. Eight data were obtained through surveys and interviews, and some data were analyzed after being obtained through smart wearable devices. Traditional learning model amount are effectively learned through algorithms with the help of various sensors and Artificial Intelligent. Therefore, this study suggests learning activities based on the deep-learning instruction model as a method for teaching to improve data analytic thinking ability. Models analyze learning activity data design a model of the data through the observation of a given data.</abstract><pub>IEEE</pub><doi>10.1109/ICCE-Taiwan49838.2020.9258065</doi><tpages>2</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2575-8284
ispartof 2020 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan), 2020, p.1-2
issn 2575-8284
language eng
recordid cdi_ieee_primary_9258065
source IEEE Xplore All Conference Series
subjects Analytical models
Data analysis
Data models
Data visualization
Deep learning
Education
Intelligent sensors
title Deep Learning Suggestions for Analyzing Student Activity Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A58%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Deep%20Learning%20Suggestions%20for%20Analyzing%20Student%20Activity%20Data&rft.btitle=2020%20IEEE%20International%20Conference%20on%20Consumer%20Electronics%20-%20Taiwan%20(ICCE-Taiwan)&rft.au=Park,%20Hyeonghu&rft.date=2020-09-28&rft.spage=1&rft.epage=2&rft.pages=1-2&rft.eissn=2575-8284&rft_id=info:doi/10.1109/ICCE-Taiwan49838.2020.9258065&rft.eisbn=9781728173993&rft.eisbn_list=172817399X&rft_dat=%3Cieee_CHZPO%3E9258065%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-8e22939d2a519271f83096f5ecd7545c3bd8d77623d7a846d1b0c35cb2bd42083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9258065&rfr_iscdi=true