Loading…
Deep Learning Suggestions for Analyzing Student Activity Data
In this study, eight data are collected data. Eight data were obtained through surveys and interviews, and some data were analyzed after being obtained through smart wearable devices. Traditional learning model amount are effectively learned through algorithms with the help of various sensors and Ar...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Park, Hyeonghu Lee, Tacklim Cho, Keonhee Jang, Hyeonwoo Park, Sehyun |
description | In this study, eight data are collected data. Eight data were obtained through surveys and interviews, and some data were analyzed after being obtained through smart wearable devices. Traditional learning model amount are effectively learned through algorithms with the help of various sensors and Artificial Intelligent. Therefore, this study suggests learning activities based on the deep-learning instruction model as a method for teaching to improve data analytic thinking ability. Models analyze learning activity data design a model of the data through the observation of a given data. |
doi_str_mv | 10.1109/ICCE-Taiwan49838.2020.9258065 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9258065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9258065</ieee_id><sourcerecordid>9258065</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-8e22939d2a519271f83096f5ecd7545c3bd8d77623d7a846d1b0c35cb2bd42083</originalsourceid><addsrcrecordid>eNotj0FLwzAYhqMgOGZ_gZdcPLZ--dI0-Q4eSjd1UPDgPI-0SUtkdqPNlPrrFd3h5Tk88MDL2J2ATAig-01VrdOtDV92yMlIkyEgZITKQKEuWELaCI2_k0Tyki1QaZUaNPk1S6bpHQCkIABBC_aw8v7Ia2_HIQw9fz31vZ9iOAwT7w4jLwe7n7__TDw5P0RetjF8hjjzlY32hl11dj_55Mwle3tcb6vntH552lRlnQYEGVPjEUmSQ6sEoRadkUBFp3zrtMpVKxtnnNYFSqetyQsnGmilahtsXI5g5JLd_neD9353HMOHHefd-bD8AREfS_I</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Deep Learning Suggestions for Analyzing Student Activity Data</title><source>IEEE Xplore All Conference Series</source><creator>Park, Hyeonghu ; Lee, Tacklim ; Cho, Keonhee ; Jang, Hyeonwoo ; Park, Sehyun</creator><creatorcontrib>Park, Hyeonghu ; Lee, Tacklim ; Cho, Keonhee ; Jang, Hyeonwoo ; Park, Sehyun</creatorcontrib><description>In this study, eight data are collected data. Eight data were obtained through surveys and interviews, and some data were analyzed after being obtained through smart wearable devices. Traditional learning model amount are effectively learned through algorithms with the help of various sensors and Artificial Intelligent. Therefore, this study suggests learning activities based on the deep-learning instruction model as a method for teaching to improve data analytic thinking ability. Models analyze learning activity data design a model of the data through the observation of a given data.</description><identifier>EISSN: 2575-8284</identifier><identifier>EISBN: 9781728173993</identifier><identifier>EISBN: 172817399X</identifier><identifier>DOI: 10.1109/ICCE-Taiwan49838.2020.9258065</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Data analysis ; Data models ; Data visualization ; Deep learning ; Education ; Intelligent sensors</subject><ispartof>2020 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan), 2020, p.1-2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9258065$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9258065$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Park, Hyeonghu</creatorcontrib><creatorcontrib>Lee, Tacklim</creatorcontrib><creatorcontrib>Cho, Keonhee</creatorcontrib><creatorcontrib>Jang, Hyeonwoo</creatorcontrib><creatorcontrib>Park, Sehyun</creatorcontrib><title>Deep Learning Suggestions for Analyzing Student Activity Data</title><title>2020 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)</title><addtitle>ICCE-Taiwan</addtitle><description>In this study, eight data are collected data. Eight data were obtained through surveys and interviews, and some data were analyzed after being obtained through smart wearable devices. Traditional learning model amount are effectively learned through algorithms with the help of various sensors and Artificial Intelligent. Therefore, this study suggests learning activities based on the deep-learning instruction model as a method for teaching to improve data analytic thinking ability. Models analyze learning activity data design a model of the data through the observation of a given data.</description><subject>Analytical models</subject><subject>Data analysis</subject><subject>Data models</subject><subject>Data visualization</subject><subject>Deep learning</subject><subject>Education</subject><subject>Intelligent sensors</subject><issn>2575-8284</issn><isbn>9781728173993</isbn><isbn>172817399X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj0FLwzAYhqMgOGZ_gZdcPLZ--dI0-Q4eSjd1UPDgPI-0SUtkdqPNlPrrFd3h5Tk88MDL2J2ATAig-01VrdOtDV92yMlIkyEgZITKQKEuWELaCI2_k0Tyki1QaZUaNPk1S6bpHQCkIABBC_aw8v7Ia2_HIQw9fz31vZ9iOAwT7w4jLwe7n7__TDw5P0RetjF8hjjzlY32hl11dj_55Mwle3tcb6vntH552lRlnQYEGVPjEUmSQ6sEoRadkUBFp3zrtMpVKxtnnNYFSqetyQsnGmilahtsXI5g5JLd_neD9353HMOHHefd-bD8AREfS_I</recordid><startdate>20200928</startdate><enddate>20200928</enddate><creator>Park, Hyeonghu</creator><creator>Lee, Tacklim</creator><creator>Cho, Keonhee</creator><creator>Jang, Hyeonwoo</creator><creator>Park, Sehyun</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20200928</creationdate><title>Deep Learning Suggestions for Analyzing Student Activity Data</title><author>Park, Hyeonghu ; Lee, Tacklim ; Cho, Keonhee ; Jang, Hyeonwoo ; Park, Sehyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-8e22939d2a519271f83096f5ecd7545c3bd8d77623d7a846d1b0c35cb2bd42083</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical models</topic><topic>Data analysis</topic><topic>Data models</topic><topic>Data visualization</topic><topic>Deep learning</topic><topic>Education</topic><topic>Intelligent sensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Park, Hyeonghu</creatorcontrib><creatorcontrib>Lee, Tacklim</creatorcontrib><creatorcontrib>Cho, Keonhee</creatorcontrib><creatorcontrib>Jang, Hyeonwoo</creatorcontrib><creatorcontrib>Park, Sehyun</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Park, Hyeonghu</au><au>Lee, Tacklim</au><au>Cho, Keonhee</au><au>Jang, Hyeonwoo</au><au>Park, Sehyun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Deep Learning Suggestions for Analyzing Student Activity Data</atitle><btitle>2020 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)</btitle><stitle>ICCE-Taiwan</stitle><date>2020-09-28</date><risdate>2020</risdate><spage>1</spage><epage>2</epage><pages>1-2</pages><eissn>2575-8284</eissn><eisbn>9781728173993</eisbn><eisbn>172817399X</eisbn><abstract>In this study, eight data are collected data. Eight data were obtained through surveys and interviews, and some data were analyzed after being obtained through smart wearable devices. Traditional learning model amount are effectively learned through algorithms with the help of various sensors and Artificial Intelligent. Therefore, this study suggests learning activities based on the deep-learning instruction model as a method for teaching to improve data analytic thinking ability. Models analyze learning activity data design a model of the data through the observation of a given data.</abstract><pub>IEEE</pub><doi>10.1109/ICCE-Taiwan49838.2020.9258065</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2575-8284 |
ispartof | 2020 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan), 2020, p.1-2 |
issn | 2575-8284 |
language | eng |
recordid | cdi_ieee_primary_9258065 |
source | IEEE Xplore All Conference Series |
subjects | Analytical models Data analysis Data models Data visualization Deep learning Education Intelligent sensors |
title | Deep Learning Suggestions for Analyzing Student Activity Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A58%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Deep%20Learning%20Suggestions%20for%20Analyzing%20Student%20Activity%20Data&rft.btitle=2020%20IEEE%20International%20Conference%20on%20Consumer%20Electronics%20-%20Taiwan%20(ICCE-Taiwan)&rft.au=Park,%20Hyeonghu&rft.date=2020-09-28&rft.spage=1&rft.epage=2&rft.pages=1-2&rft.eissn=2575-8284&rft_id=info:doi/10.1109/ICCE-Taiwan49838.2020.9258065&rft.eisbn=9781728173993&rft.eisbn_list=172817399X&rft_dat=%3Cieee_CHZPO%3E9258065%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-8e22939d2a519271f83096f5ecd7545c3bd8d77623d7a846d1b0c35cb2bd42083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9258065&rfr_iscdi=true |