Loading…
A Novel Complex Filter Design With Dual Feedback for High Frequency Wireless Receiver Applications
This brief presents a low-power tunable G_{m}-C complex filter for wireless receiver applications. The proposed design achieves an unconditional stability thanks to the internal negative feedback mechanism. This negative feedback helps in achieving a high-frequency shift and the negative transcond...
Saved in:
Published in: | IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2021-06, Vol.68 (6), p.1748-1752 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c295t-aa69670295356fc87627a27fa972c2e80a0e59b7f10344b8750ee614ad59593f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c295t-aa69670295356fc87627a27fa972c2e80a0e59b7f10344b8750ee614ad59593f3 |
container_end_page | 1752 |
container_issue | 6 |
container_start_page | 1748 |
container_title | IEEE transactions on circuits and systems. II, Express briefs |
container_volume | 68 |
creator | Veerendranath, P. S. Sharma, Vivek Vasantha, M. H. Kumar, Y. B. Nithin |
description | This brief presents a low-power tunable G_{m}-C complex filter for wireless receiver applications. The proposed design achieves an unconditional stability thanks to the internal negative feedback mechanism. This negative feedback helps in achieving a high-frequency shift and the negative transconductance of the circuit improves the Image Rejection Ratio (IRR) and Common Mode Rejection Ratio (CMRR) of the proposed design. The proposed circuit has independent control over bandwidth and frequency shift which makes an attractive solution for multi-standard and multi-mode wireless receiver applications. A second order complex filter is designed for Long Term Evolution (LTE) application and used as a test vehicle to verify the proposed concept. The circuit is designed using a 180 nm CMOS process with a power consumption of 106~\mu \text{W} from a 1 V supply voltage. It is centered at 9.2 MHz with −3 dB bandwidth of 1.4 MHz and provides an IRR of 51 dB with a voltage gain of 45 dB. The total integrated in-band Input Referred Noise (IRN) is 70~\mu V_{rms} and FoM of 47 aJ is achieved. The area of the layout of the proposed design is 78~\mu \text{m} X 78~\mu \text{m} . |
doi_str_mv | 10.1109/TCSII.2020.3031658 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9259087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9259087</ieee_id><sourcerecordid>2533491459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-aa69670295356fc87627a27fa972c2e80a0e59b7f10344b8750ee614ad59593f3</originalsourceid><addsrcrecordid>eNo9kF1PwjAUhhujiYj-Ab1p4vWwH-u6XpLhhIRoohgvm66cQXFssx1E_r1DjFfnXLzPOW8ehG4pGVFK1MMie5vNRowwMuKE00SkZ2hAhUgjLhU9P-6xiqSM5SW6CmFDCFOEswEqxvi52UOFs2bbVvCNc1d14PEEglvV-MN1azzZmQrnAMvC2E9cNh5P3WqNcw9fO6jtoU95qCAE_AoW3L7Hx21bOWs619ThGl2Upgpw8zeH6D1_XGTTaP7yNMvG88gyJbrImEQlsu8luEhKm8qEScNkaZRklkFKDAGhCllSwuO4SKUgAAmNzVIooXjJh-j-dLf1TV8sdHrT7Hzdv9RMcB4rGve5IWKnlPVNCB5K3Xq3Nf6gKdFHl_rXpT661H8ue-juBDkA-AcUE4qkkv8AaxZu9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533491459</pqid></control><display><type>article</type><title>A Novel Complex Filter Design With Dual Feedback for High Frequency Wireless Receiver Applications</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Veerendranath, P. S. ; Sharma, Vivek ; Vasantha, M. H. ; Kumar, Y. B. Nithin</creator><creatorcontrib>Veerendranath, P. S. ; Sharma, Vivek ; Vasantha, M. H. ; Kumar, Y. B. Nithin</creatorcontrib><description><![CDATA[This brief presents a low-power tunable <inline-formula> <tex-math notation="LaTeX">G_{m}-C </tex-math></inline-formula> complex filter for wireless receiver applications. The proposed design achieves an unconditional stability thanks to the internal negative feedback mechanism. This negative feedback helps in achieving a high-frequency shift and the negative transconductance of the circuit improves the Image Rejection Ratio (IRR) and Common Mode Rejection Ratio (CMRR) of the proposed design. The proposed circuit has independent control over bandwidth and frequency shift which makes an attractive solution for multi-standard and multi-mode wireless receiver applications. A second order complex filter is designed for Long Term Evolution (LTE) application and used as a test vehicle to verify the proposed concept. The circuit is designed using a 180 nm CMOS process with a power consumption of <inline-formula> <tex-math notation="LaTeX">106~\mu \text{W} </tex-math></inline-formula> from a 1 V supply voltage. It is centered at 9.2 MHz with −3 dB bandwidth of 1.4 MHz and provides an IRR of 51 dB with a voltage gain of 45 dB. The total integrated in-band Input Referred Noise (IRN) is <inline-formula> <tex-math notation="LaTeX">70~\mu V_{rms} </tex-math></inline-formula> and FoM of 47 aJ is achieved. The area of the layout of the proposed design is <inline-formula> <tex-math notation="LaTeX">78~\mu \text{m} </tex-math></inline-formula> X <inline-formula> <tex-math notation="LaTeX">78~\mu \text{m} </tex-math></inline-formula>.]]></description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2020.3031658</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Gₘ -C ; Bandwidth ; Bandwidths ; Circuit design ; Circuit stability ; CMOS ; complex filter ; Design ; Filter design (mathematics) ; Frequency shift ; image rejection ratio (IRR) ; Low power ; low voltage ; LTE ; Negative feedback ; positive feedback compensation ; Power consumption ; Receivers ; Rejection ; Test vehicles ; Transconductance ; Transistors ; Voltage gain ; Wireless communication</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2021-06, Vol.68 (6), p.1748-1752</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-aa69670295356fc87627a27fa972c2e80a0e59b7f10344b8750ee614ad59593f3</citedby><cites>FETCH-LOGICAL-c295t-aa69670295356fc87627a27fa972c2e80a0e59b7f10344b8750ee614ad59593f3</cites><orcidid>0000-0003-2223-5866 ; 0000-0002-4738-4983</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9259087$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Veerendranath, P. S.</creatorcontrib><creatorcontrib>Sharma, Vivek</creatorcontrib><creatorcontrib>Vasantha, M. H.</creatorcontrib><creatorcontrib>Kumar, Y. B. Nithin</creatorcontrib><title>A Novel Complex Filter Design With Dual Feedback for High Frequency Wireless Receiver Applications</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description><![CDATA[This brief presents a low-power tunable <inline-formula> <tex-math notation="LaTeX">G_{m}-C </tex-math></inline-formula> complex filter for wireless receiver applications. The proposed design achieves an unconditional stability thanks to the internal negative feedback mechanism. This negative feedback helps in achieving a high-frequency shift and the negative transconductance of the circuit improves the Image Rejection Ratio (IRR) and Common Mode Rejection Ratio (CMRR) of the proposed design. The proposed circuit has independent control over bandwidth and frequency shift which makes an attractive solution for multi-standard and multi-mode wireless receiver applications. A second order complex filter is designed for Long Term Evolution (LTE) application and used as a test vehicle to verify the proposed concept. The circuit is designed using a 180 nm CMOS process with a power consumption of <inline-formula> <tex-math notation="LaTeX">106~\mu \text{W} </tex-math></inline-formula> from a 1 V supply voltage. It is centered at 9.2 MHz with −3 dB bandwidth of 1.4 MHz and provides an IRR of 51 dB with a voltage gain of 45 dB. The total integrated in-band Input Referred Noise (IRN) is <inline-formula> <tex-math notation="LaTeX">70~\mu V_{rms} </tex-math></inline-formula> and FoM of 47 aJ is achieved. The area of the layout of the proposed design is <inline-formula> <tex-math notation="LaTeX">78~\mu \text{m} </tex-math></inline-formula> X <inline-formula> <tex-math notation="LaTeX">78~\mu \text{m} </tex-math></inline-formula>.]]></description><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Gₘ -C</subject><subject>Bandwidth</subject><subject>Bandwidths</subject><subject>Circuit design</subject><subject>Circuit stability</subject><subject>CMOS</subject><subject>complex filter</subject><subject>Design</subject><subject>Filter design (mathematics)</subject><subject>Frequency shift</subject><subject>image rejection ratio (IRR)</subject><subject>Low power</subject><subject>low voltage</subject><subject>LTE</subject><subject>Negative feedback</subject><subject>positive feedback compensation</subject><subject>Power consumption</subject><subject>Receivers</subject><subject>Rejection</subject><subject>Test vehicles</subject><subject>Transconductance</subject><subject>Transistors</subject><subject>Voltage gain</subject><subject>Wireless communication</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kF1PwjAUhhujiYj-Ab1p4vWwH-u6XpLhhIRoohgvm66cQXFssx1E_r1DjFfnXLzPOW8ehG4pGVFK1MMie5vNRowwMuKE00SkZ2hAhUgjLhU9P-6xiqSM5SW6CmFDCFOEswEqxvi52UOFs2bbVvCNc1d14PEEglvV-MN1azzZmQrnAMvC2E9cNh5P3WqNcw9fO6jtoU95qCAE_AoW3L7Hx21bOWs619ThGl2Upgpw8zeH6D1_XGTTaP7yNMvG88gyJbrImEQlsu8luEhKm8qEScNkaZRklkFKDAGhCllSwuO4SKUgAAmNzVIooXjJh-j-dLf1TV8sdHrT7Hzdv9RMcB4rGve5IWKnlPVNCB5K3Xq3Nf6gKdFHl_rXpT661H8ue-juBDkA-AcUE4qkkv8AaxZu9g</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Veerendranath, P. S.</creator><creator>Sharma, Vivek</creator><creator>Vasantha, M. H.</creator><creator>Kumar, Y. B. Nithin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2223-5866</orcidid><orcidid>https://orcid.org/0000-0002-4738-4983</orcidid></search><sort><creationdate>20210601</creationdate><title>A Novel Complex Filter Design With Dual Feedback for High Frequency Wireless Receiver Applications</title><author>Veerendranath, P. S. ; Sharma, Vivek ; Vasantha, M. H. ; Kumar, Y. B. Nithin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-aa69670295356fc87627a27fa972c2e80a0e59b7f10344b8750ee614ad59593f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Gₘ -C</topic><topic>Bandwidth</topic><topic>Bandwidths</topic><topic>Circuit design</topic><topic>Circuit stability</topic><topic>CMOS</topic><topic>complex filter</topic><topic>Design</topic><topic>Filter design (mathematics)</topic><topic>Frequency shift</topic><topic>image rejection ratio (IRR)</topic><topic>Low power</topic><topic>low voltage</topic><topic>LTE</topic><topic>Negative feedback</topic><topic>positive feedback compensation</topic><topic>Power consumption</topic><topic>Receivers</topic><topic>Rejection</topic><topic>Test vehicles</topic><topic>Transconductance</topic><topic>Transistors</topic><topic>Voltage gain</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veerendranath, P. S.</creatorcontrib><creatorcontrib>Sharma, Vivek</creatorcontrib><creatorcontrib>Vasantha, M. H.</creatorcontrib><creatorcontrib>Kumar, Y. B. Nithin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veerendranath, P. S.</au><au>Sharma, Vivek</au><au>Vasantha, M. H.</au><au>Kumar, Y. B. Nithin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Complex Filter Design With Dual Feedback for High Frequency Wireless Receiver Applications</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>68</volume><issue>6</issue><spage>1748</spage><epage>1752</epage><pages>1748-1752</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ICSPE5</coden><abstract><![CDATA[This brief presents a low-power tunable <inline-formula> <tex-math notation="LaTeX">G_{m}-C </tex-math></inline-formula> complex filter for wireless receiver applications. The proposed design achieves an unconditional stability thanks to the internal negative feedback mechanism. This negative feedback helps in achieving a high-frequency shift and the negative transconductance of the circuit improves the Image Rejection Ratio (IRR) and Common Mode Rejection Ratio (CMRR) of the proposed design. The proposed circuit has independent control over bandwidth and frequency shift which makes an attractive solution for multi-standard and multi-mode wireless receiver applications. A second order complex filter is designed for Long Term Evolution (LTE) application and used as a test vehicle to verify the proposed concept. The circuit is designed using a 180 nm CMOS process with a power consumption of <inline-formula> <tex-math notation="LaTeX">106~\mu \text{W} </tex-math></inline-formula> from a 1 V supply voltage. It is centered at 9.2 MHz with −3 dB bandwidth of 1.4 MHz and provides an IRR of 51 dB with a voltage gain of 45 dB. The total integrated in-band Input Referred Noise (IRN) is <inline-formula> <tex-math notation="LaTeX">70~\mu V_{rms} </tex-math></inline-formula> and FoM of 47 aJ is achieved. The area of the layout of the proposed design is <inline-formula> <tex-math notation="LaTeX">78~\mu \text{m} </tex-math></inline-formula> X <inline-formula> <tex-math notation="LaTeX">78~\mu \text{m} </tex-math></inline-formula>.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2020.3031658</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-2223-5866</orcidid><orcidid>https://orcid.org/0000-0002-4738-4983</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-7747 |
ispartof | IEEE transactions on circuits and systems. II, Express briefs, 2021-06, Vol.68 (6), p.1748-1752 |
issn | 1549-7747 1558-3791 |
language | eng |
recordid | cdi_ieee_primary_9259087 |
source | IEEE Electronic Library (IEL) Journals |
subjects | <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Gₘ -C Bandwidth Bandwidths Circuit design Circuit stability CMOS complex filter Design Filter design (mathematics) Frequency shift image rejection ratio (IRR) Low power low voltage LTE Negative feedback positive feedback compensation Power consumption Receivers Rejection Test vehicles Transconductance Transistors Voltage gain Wireless communication |
title | A Novel Complex Filter Design With Dual Feedback for High Frequency Wireless Receiver Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A22%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Complex%20Filter%20Design%20With%20Dual%20Feedback%20for%20High%20Frequency%20Wireless%20Receiver%20Applications&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Veerendranath,%20P.%20S.&rft.date=2021-06-01&rft.volume=68&rft.issue=6&rft.spage=1748&rft.epage=1752&rft.pages=1748-1752&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ICSPE5&rft_id=info:doi/10.1109/TCSII.2020.3031658&rft_dat=%3Cproquest_ieee_%3E2533491459%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-aa69670295356fc87627a27fa972c2e80a0e59b7f10344b8750ee614ad59593f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2533491459&rft_id=info:pmid/&rft_ieee_id=9259087&rfr_iscdi=true |