Loading…

A Novel Complex Filter Design With Dual Feedback for High Frequency Wireless Receiver Applications

This brief presents a low-power tunable G_{m}-C complex filter for wireless receiver applications. The proposed design achieves an unconditional stability thanks to the internal negative feedback mechanism. This negative feedback helps in achieving a high-frequency shift and the negative transcond...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2021-06, Vol.68 (6), p.1748-1752
Main Authors: Veerendranath, P. S., Sharma, Vivek, Vasantha, M. H., Kumar, Y. B. Nithin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-aa69670295356fc87627a27fa972c2e80a0e59b7f10344b8750ee614ad59593f3
cites cdi_FETCH-LOGICAL-c295t-aa69670295356fc87627a27fa972c2e80a0e59b7f10344b8750ee614ad59593f3
container_end_page 1752
container_issue 6
container_start_page 1748
container_title IEEE transactions on circuits and systems. II, Express briefs
container_volume 68
creator Veerendranath, P. S.
Sharma, Vivek
Vasantha, M. H.
Kumar, Y. B. Nithin
description This brief presents a low-power tunable G_{m}-C complex filter for wireless receiver applications. The proposed design achieves an unconditional stability thanks to the internal negative feedback mechanism. This negative feedback helps in achieving a high-frequency shift and the negative transconductance of the circuit improves the Image Rejection Ratio (IRR) and Common Mode Rejection Ratio (CMRR) of the proposed design. The proposed circuit has independent control over bandwidth and frequency shift which makes an attractive solution for multi-standard and multi-mode wireless receiver applications. A second order complex filter is designed for Long Term Evolution (LTE) application and used as a test vehicle to verify the proposed concept. The circuit is designed using a 180 nm CMOS process with a power consumption of 106~\mu \text{W} from a 1 V supply voltage. It is centered at 9.2 MHz with −3 dB bandwidth of 1.4 MHz and provides an IRR of 51 dB with a voltage gain of 45 dB. The total integrated in-band Input Referred Noise (IRN) is 70~\mu V_{rms} and FoM of 47 aJ is achieved. The area of the layout of the proposed design is 78~\mu \text{m} X 78~\mu \text{m} .
doi_str_mv 10.1109/TCSII.2020.3031658
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9259087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9259087</ieee_id><sourcerecordid>2533491459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-aa69670295356fc87627a27fa972c2e80a0e59b7f10344b8750ee614ad59593f3</originalsourceid><addsrcrecordid>eNo9kF1PwjAUhhujiYj-Ab1p4vWwH-u6XpLhhIRoohgvm66cQXFssx1E_r1DjFfnXLzPOW8ehG4pGVFK1MMie5vNRowwMuKE00SkZ2hAhUgjLhU9P-6xiqSM5SW6CmFDCFOEswEqxvi52UOFs2bbVvCNc1d14PEEglvV-MN1azzZmQrnAMvC2E9cNh5P3WqNcw9fO6jtoU95qCAE_AoW3L7Hx21bOWs619ThGl2Upgpw8zeH6D1_XGTTaP7yNMvG88gyJbrImEQlsu8luEhKm8qEScNkaZRklkFKDAGhCllSwuO4SKUgAAmNzVIooXjJh-j-dLf1TV8sdHrT7Hzdv9RMcB4rGve5IWKnlPVNCB5K3Xq3Nf6gKdFHl_rXpT661H8ue-juBDkA-AcUE4qkkv8AaxZu9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533491459</pqid></control><display><type>article</type><title>A Novel Complex Filter Design With Dual Feedback for High Frequency Wireless Receiver Applications</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Veerendranath, P. S. ; Sharma, Vivek ; Vasantha, M. H. ; Kumar, Y. B. Nithin</creator><creatorcontrib>Veerendranath, P. S. ; Sharma, Vivek ; Vasantha, M. H. ; Kumar, Y. B. Nithin</creatorcontrib><description><![CDATA[This brief presents a low-power tunable <inline-formula> <tex-math notation="LaTeX">G_{m}-C </tex-math></inline-formula> complex filter for wireless receiver applications. The proposed design achieves an unconditional stability thanks to the internal negative feedback mechanism. This negative feedback helps in achieving a high-frequency shift and the negative transconductance of the circuit improves the Image Rejection Ratio (IRR) and Common Mode Rejection Ratio (CMRR) of the proposed design. The proposed circuit has independent control over bandwidth and frequency shift which makes an attractive solution for multi-standard and multi-mode wireless receiver applications. A second order complex filter is designed for Long Term Evolution (LTE) application and used as a test vehicle to verify the proposed concept. The circuit is designed using a 180 nm CMOS process with a power consumption of <inline-formula> <tex-math notation="LaTeX">106~\mu \text{W} </tex-math></inline-formula> from a 1 V supply voltage. It is centered at 9.2 MHz with −3 dB bandwidth of 1.4 MHz and provides an IRR of 51 dB with a voltage gain of 45 dB. The total integrated in-band Input Referred Noise (IRN) is <inline-formula> <tex-math notation="LaTeX">70~\mu V_{rms} </tex-math></inline-formula> and FoM of 47 aJ is achieved. The area of the layout of the proposed design is <inline-formula> <tex-math notation="LaTeX">78~\mu \text{m} </tex-math></inline-formula> X <inline-formula> <tex-math notation="LaTeX">78~\mu \text{m} </tex-math></inline-formula>.]]></description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2020.3031658</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Gₘ -C ; Bandwidth ; Bandwidths ; Circuit design ; Circuit stability ; CMOS ; complex filter ; Design ; Filter design (mathematics) ; Frequency shift ; image rejection ratio (IRR) ; Low power ; low voltage ; LTE ; Negative feedback ; positive feedback compensation ; Power consumption ; Receivers ; Rejection ; Test vehicles ; Transconductance ; Transistors ; Voltage gain ; Wireless communication</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2021-06, Vol.68 (6), p.1748-1752</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-aa69670295356fc87627a27fa972c2e80a0e59b7f10344b8750ee614ad59593f3</citedby><cites>FETCH-LOGICAL-c295t-aa69670295356fc87627a27fa972c2e80a0e59b7f10344b8750ee614ad59593f3</cites><orcidid>0000-0003-2223-5866 ; 0000-0002-4738-4983</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9259087$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Veerendranath, P. S.</creatorcontrib><creatorcontrib>Sharma, Vivek</creatorcontrib><creatorcontrib>Vasantha, M. H.</creatorcontrib><creatorcontrib>Kumar, Y. B. Nithin</creatorcontrib><title>A Novel Complex Filter Design With Dual Feedback for High Frequency Wireless Receiver Applications</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description><![CDATA[This brief presents a low-power tunable <inline-formula> <tex-math notation="LaTeX">G_{m}-C </tex-math></inline-formula> complex filter for wireless receiver applications. The proposed design achieves an unconditional stability thanks to the internal negative feedback mechanism. This negative feedback helps in achieving a high-frequency shift and the negative transconductance of the circuit improves the Image Rejection Ratio (IRR) and Common Mode Rejection Ratio (CMRR) of the proposed design. The proposed circuit has independent control over bandwidth and frequency shift which makes an attractive solution for multi-standard and multi-mode wireless receiver applications. A second order complex filter is designed for Long Term Evolution (LTE) application and used as a test vehicle to verify the proposed concept. The circuit is designed using a 180 nm CMOS process with a power consumption of <inline-formula> <tex-math notation="LaTeX">106~\mu \text{W} </tex-math></inline-formula> from a 1 V supply voltage. It is centered at 9.2 MHz with −3 dB bandwidth of 1.4 MHz and provides an IRR of 51 dB with a voltage gain of 45 dB. The total integrated in-band Input Referred Noise (IRN) is <inline-formula> <tex-math notation="LaTeX">70~\mu V_{rms} </tex-math></inline-formula> and FoM of 47 aJ is achieved. The area of the layout of the proposed design is <inline-formula> <tex-math notation="LaTeX">78~\mu \text{m} </tex-math></inline-formula> X <inline-formula> <tex-math notation="LaTeX">78~\mu \text{m} </tex-math></inline-formula>.]]></description><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Gₘ -C</subject><subject>Bandwidth</subject><subject>Bandwidths</subject><subject>Circuit design</subject><subject>Circuit stability</subject><subject>CMOS</subject><subject>complex filter</subject><subject>Design</subject><subject>Filter design (mathematics)</subject><subject>Frequency shift</subject><subject>image rejection ratio (IRR)</subject><subject>Low power</subject><subject>low voltage</subject><subject>LTE</subject><subject>Negative feedback</subject><subject>positive feedback compensation</subject><subject>Power consumption</subject><subject>Receivers</subject><subject>Rejection</subject><subject>Test vehicles</subject><subject>Transconductance</subject><subject>Transistors</subject><subject>Voltage gain</subject><subject>Wireless communication</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kF1PwjAUhhujiYj-Ab1p4vWwH-u6XpLhhIRoohgvm66cQXFssx1E_r1DjFfnXLzPOW8ehG4pGVFK1MMie5vNRowwMuKE00SkZ2hAhUgjLhU9P-6xiqSM5SW6CmFDCFOEswEqxvi52UOFs2bbVvCNc1d14PEEglvV-MN1azzZmQrnAMvC2E9cNh5P3WqNcw9fO6jtoU95qCAE_AoW3L7Hx21bOWs619ThGl2Upgpw8zeH6D1_XGTTaP7yNMvG88gyJbrImEQlsu8luEhKm8qEScNkaZRklkFKDAGhCllSwuO4SKUgAAmNzVIooXjJh-j-dLf1TV8sdHrT7Hzdv9RMcB4rGve5IWKnlPVNCB5K3Xq3Nf6gKdFHl_rXpT661H8ue-juBDkA-AcUE4qkkv8AaxZu9g</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Veerendranath, P. S.</creator><creator>Sharma, Vivek</creator><creator>Vasantha, M. H.</creator><creator>Kumar, Y. B. Nithin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2223-5866</orcidid><orcidid>https://orcid.org/0000-0002-4738-4983</orcidid></search><sort><creationdate>20210601</creationdate><title>A Novel Complex Filter Design With Dual Feedback for High Frequency Wireless Receiver Applications</title><author>Veerendranath, P. S. ; Sharma, Vivek ; Vasantha, M. H. ; Kumar, Y. B. Nithin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-aa69670295356fc87627a27fa972c2e80a0e59b7f10344b8750ee614ad59593f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Gₘ -C</topic><topic>Bandwidth</topic><topic>Bandwidths</topic><topic>Circuit design</topic><topic>Circuit stability</topic><topic>CMOS</topic><topic>complex filter</topic><topic>Design</topic><topic>Filter design (mathematics)</topic><topic>Frequency shift</topic><topic>image rejection ratio (IRR)</topic><topic>Low power</topic><topic>low voltage</topic><topic>LTE</topic><topic>Negative feedback</topic><topic>positive feedback compensation</topic><topic>Power consumption</topic><topic>Receivers</topic><topic>Rejection</topic><topic>Test vehicles</topic><topic>Transconductance</topic><topic>Transistors</topic><topic>Voltage gain</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veerendranath, P. S.</creatorcontrib><creatorcontrib>Sharma, Vivek</creatorcontrib><creatorcontrib>Vasantha, M. H.</creatorcontrib><creatorcontrib>Kumar, Y. B. Nithin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veerendranath, P. S.</au><au>Sharma, Vivek</au><au>Vasantha, M. H.</au><au>Kumar, Y. B. Nithin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Complex Filter Design With Dual Feedback for High Frequency Wireless Receiver Applications</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>68</volume><issue>6</issue><spage>1748</spage><epage>1752</epage><pages>1748-1752</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ICSPE5</coden><abstract><![CDATA[This brief presents a low-power tunable <inline-formula> <tex-math notation="LaTeX">G_{m}-C </tex-math></inline-formula> complex filter for wireless receiver applications. The proposed design achieves an unconditional stability thanks to the internal negative feedback mechanism. This negative feedback helps in achieving a high-frequency shift and the negative transconductance of the circuit improves the Image Rejection Ratio (IRR) and Common Mode Rejection Ratio (CMRR) of the proposed design. The proposed circuit has independent control over bandwidth and frequency shift which makes an attractive solution for multi-standard and multi-mode wireless receiver applications. A second order complex filter is designed for Long Term Evolution (LTE) application and used as a test vehicle to verify the proposed concept. The circuit is designed using a 180 nm CMOS process with a power consumption of <inline-formula> <tex-math notation="LaTeX">106~\mu \text{W} </tex-math></inline-formula> from a 1 V supply voltage. It is centered at 9.2 MHz with −3 dB bandwidth of 1.4 MHz and provides an IRR of 51 dB with a voltage gain of 45 dB. The total integrated in-band Input Referred Noise (IRN) is <inline-formula> <tex-math notation="LaTeX">70~\mu V_{rms} </tex-math></inline-formula> and FoM of 47 aJ is achieved. The area of the layout of the proposed design is <inline-formula> <tex-math notation="LaTeX">78~\mu \text{m} </tex-math></inline-formula> X <inline-formula> <tex-math notation="LaTeX">78~\mu \text{m} </tex-math></inline-formula>.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2020.3031658</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-2223-5866</orcidid><orcidid>https://orcid.org/0000-0002-4738-4983</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. II, Express briefs, 2021-06, Vol.68 (6), p.1748-1752
issn 1549-7747
1558-3791
language eng
recordid cdi_ieee_primary_9259087
source IEEE Electronic Library (IEL) Journals
subjects <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Gₘ -C
Bandwidth
Bandwidths
Circuit design
Circuit stability
CMOS
complex filter
Design
Filter design (mathematics)
Frequency shift
image rejection ratio (IRR)
Low power
low voltage
LTE
Negative feedback
positive feedback compensation
Power consumption
Receivers
Rejection
Test vehicles
Transconductance
Transistors
Voltage gain
Wireless communication
title A Novel Complex Filter Design With Dual Feedback for High Frequency Wireless Receiver Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A22%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Complex%20Filter%20Design%20With%20Dual%20Feedback%20for%20High%20Frequency%20Wireless%20Receiver%20Applications&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Veerendranath,%20P.%20S.&rft.date=2021-06-01&rft.volume=68&rft.issue=6&rft.spage=1748&rft.epage=1752&rft.pages=1748-1752&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ICSPE5&rft_id=info:doi/10.1109/TCSII.2020.3031658&rft_dat=%3Cproquest_ieee_%3E2533491459%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-aa69670295356fc87627a27fa972c2e80a0e59b7f10344b8750ee614ad59593f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2533491459&rft_id=info:pmid/&rft_ieee_id=9259087&rfr_iscdi=true