Loading…

Contour-Aware Loss: Boundary-Aware Learning for Salient Object Segmentation

We present a learning model that makes full use of boundary information for salient object segmentation. Specifically, we come up with a novel loss function, i.e., Contour Loss, which leverages object contours to guide models to perceive salient object boundaries. Such a boundary-aware network can l...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2021, Vol.30, p.431-443
Main Authors: Chen, Zixuan, Zhou, Huajun, Lai, Jianhuang, Yang, Lingxiao, Xie, Xiaohua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a learning model that makes full use of boundary information for salient object segmentation. Specifically, we come up with a novel loss function, i.e., Contour Loss, which leverages object contours to guide models to perceive salient object boundaries. Such a boundary-aware network can learn boundary-wise distinctions between salient objects and background, hence effectively facilitating the salient object segmentation. Yet the Contour Loss emphasizes the boundaries to capture the contextual details in the local range. We further propose the hierarchical global attention module (HGAM), which forces the model hierarchically to attend to global contexts, thus captures the global visual saliency. Comprehensive experiments on six benchmark datasets show that our method achieves superior performance over state-of-the-art ones. Moreover, our model has a real-time speed of 26 fps on a TITAN X GPU.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2020.3037536