Loading…

Hardware Demonstration of a Scalable Cognitive Sparse Array

High-resolution direction of arrival estimation requires a large number of antenna elements which increases the computational cost, hardware complexity, and power requirements. To balance between hardware complexity and resolution, recently, we proposed a cognitive, scalable, sparse array selection...

Full description

Saved in:
Bibliographic Details
Main Authors: Muleti, Satish, Shavit, Yariv, Namer, Moshe, Eldar, Yonina C.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3
container_issue
container_start_page 1
container_title
container_volume
creator Muleti, Satish
Shavit, Yariv
Namer, Moshe
Eldar, Yonina C.
description High-resolution direction of arrival estimation requires a large number of antenna elements which increases the computational cost, hardware complexity, and power requirements. To balance between hardware complexity and resolution, recently, we proposed a cognitive, scalable, sparse array selection technique based on a submodular-greedy algorithm. In this demo, we present a design and implementation of a hardware prototype that demonstrate the proposed sparse antenna selection strategy. Through real-time experiments, we show that the proposed sparse selection method results in a 2 − 3 dB lower error compared to a typically employed random selection method.
doi_str_mv 10.1109/RadarConf2043947.2020.9266620
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9266620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9266620</ieee_id><sourcerecordid>9266620</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-45c1940204b59404cd92ded81bb8b5a83491ae8bf9cedfd70e8263a3c84b66493</originalsourceid><addsrcrecordid>eNotj81Kw0AURkdBsNY-gZvZuEyc_9zBVYnWCgXB6rrcydzISJqUSVD69hbs6sC3OHyHsXspSimFf3jHiLke-lYJo72pSiWUKL1yzilxwRa-AlkpkOCNEpdspnRlC6slXLObcfwWwurTNGOPa8zxFzPxJ9oP_ThlnNLQ86HlyLcNdhg64vXw1acp_RDfHjCPxJc54_GWXbXYjbQ4c84-V88f9brYvL281stNkaSEqTC2kd6c7plgTzRN9CpSBBkCBIugjZdIEFrfUGxjJQiU06gbMME54_Wc3f17ExHtDjntMR9351b9B9sgSw0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hardware Demonstration of a Scalable Cognitive Sparse Array</title><source>IEEE Xplore All Conference Series</source><creator>Muleti, Satish ; Shavit, Yariv ; Namer, Moshe ; Eldar, Yonina C.</creator><creatorcontrib>Muleti, Satish ; Shavit, Yariv ; Namer, Moshe ; Eldar, Yonina C.</creatorcontrib><description>High-resolution direction of arrival estimation requires a large number of antenna elements which increases the computational cost, hardware complexity, and power requirements. To balance between hardware complexity and resolution, recently, we proposed a cognitive, scalable, sparse array selection technique based on a submodular-greedy algorithm. In this demo, we present a design and implementation of a hardware prototype that demonstrate the proposed sparse antenna selection strategy. Through real-time experiments, we show that the proposed sparse selection method results in a 2 − 3 dB lower error compared to a typically employed random selection method.</description><identifier>EISSN: 2375-5318</identifier><identifier>EISBN: 9781728189420</identifier><identifier>EISBN: 172818942X</identifier><identifier>DOI: 10.1109/RadarConf2043947.2020.9266620</identifier><language>eng</language><publisher>IEEE</publisher><subject>Antenna arrays ; Arrays ; Complexity theory ; Direction-of-arrival estimation ; Estimation ; Hardware ; Receiving antennas</subject><ispartof>2020 IEEE Radar Conference (RadarConf20), 2020, p.1-3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9266620$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9266620$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Muleti, Satish</creatorcontrib><creatorcontrib>Shavit, Yariv</creatorcontrib><creatorcontrib>Namer, Moshe</creatorcontrib><creatorcontrib>Eldar, Yonina C.</creatorcontrib><title>Hardware Demonstration of a Scalable Cognitive Sparse Array</title><title>2020 IEEE Radar Conference (RadarConf20)</title><addtitle>RadarConf20</addtitle><description>High-resolution direction of arrival estimation requires a large number of antenna elements which increases the computational cost, hardware complexity, and power requirements. To balance between hardware complexity and resolution, recently, we proposed a cognitive, scalable, sparse array selection technique based on a submodular-greedy algorithm. In this demo, we present a design and implementation of a hardware prototype that demonstrate the proposed sparse antenna selection strategy. Through real-time experiments, we show that the proposed sparse selection method results in a 2 − 3 dB lower error compared to a typically employed random selection method.</description><subject>Antenna arrays</subject><subject>Arrays</subject><subject>Complexity theory</subject><subject>Direction-of-arrival estimation</subject><subject>Estimation</subject><subject>Hardware</subject><subject>Receiving antennas</subject><issn>2375-5318</issn><isbn>9781728189420</isbn><isbn>172818942X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81Kw0AURkdBsNY-gZvZuEyc_9zBVYnWCgXB6rrcydzISJqUSVD69hbs6sC3OHyHsXspSimFf3jHiLke-lYJo72pSiWUKL1yzilxwRa-AlkpkOCNEpdspnRlC6slXLObcfwWwurTNGOPa8zxFzPxJ9oP_ThlnNLQ86HlyLcNdhg64vXw1acp_RDfHjCPxJc54_GWXbXYjbQ4c84-V88f9brYvL281stNkaSEqTC2kd6c7plgTzRN9CpSBBkCBIugjZdIEFrfUGxjJQiU06gbMME54_Wc3f17ExHtDjntMR9351b9B9sgSw0</recordid><startdate>20200921</startdate><enddate>20200921</enddate><creator>Muleti, Satish</creator><creator>Shavit, Yariv</creator><creator>Namer, Moshe</creator><creator>Eldar, Yonina C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20200921</creationdate><title>Hardware Demonstration of a Scalable Cognitive Sparse Array</title><author>Muleti, Satish ; Shavit, Yariv ; Namer, Moshe ; Eldar, Yonina C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-45c1940204b59404cd92ded81bb8b5a83491ae8bf9cedfd70e8263a3c84b66493</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antenna arrays</topic><topic>Arrays</topic><topic>Complexity theory</topic><topic>Direction-of-arrival estimation</topic><topic>Estimation</topic><topic>Hardware</topic><topic>Receiving antennas</topic><toplevel>online_resources</toplevel><creatorcontrib>Muleti, Satish</creatorcontrib><creatorcontrib>Shavit, Yariv</creatorcontrib><creatorcontrib>Namer, Moshe</creatorcontrib><creatorcontrib>Eldar, Yonina C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Muleti, Satish</au><au>Shavit, Yariv</au><au>Namer, Moshe</au><au>Eldar, Yonina C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hardware Demonstration of a Scalable Cognitive Sparse Array</atitle><btitle>2020 IEEE Radar Conference (RadarConf20)</btitle><stitle>RadarConf20</stitle><date>2020-09-21</date><risdate>2020</risdate><spage>1</spage><epage>3</epage><pages>1-3</pages><eissn>2375-5318</eissn><eisbn>9781728189420</eisbn><eisbn>172818942X</eisbn><abstract>High-resolution direction of arrival estimation requires a large number of antenna elements which increases the computational cost, hardware complexity, and power requirements. To balance between hardware complexity and resolution, recently, we proposed a cognitive, scalable, sparse array selection technique based on a submodular-greedy algorithm. In this demo, we present a design and implementation of a hardware prototype that demonstrate the proposed sparse antenna selection strategy. Through real-time experiments, we show that the proposed sparse selection method results in a 2 − 3 dB lower error compared to a typically employed random selection method.</abstract><pub>IEEE</pub><doi>10.1109/RadarConf2043947.2020.9266620</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2375-5318
ispartof 2020 IEEE Radar Conference (RadarConf20), 2020, p.1-3
issn 2375-5318
language eng
recordid cdi_ieee_primary_9266620
source IEEE Xplore All Conference Series
subjects Antenna arrays
Arrays
Complexity theory
Direction-of-arrival estimation
Estimation
Hardware
Receiving antennas
title Hardware Demonstration of a Scalable Cognitive Sparse Array
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A49%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hardware%20Demonstration%20of%20a%20Scalable%20Cognitive%20Sparse%20Array&rft.btitle=2020%20IEEE%20Radar%20Conference%20(RadarConf20)&rft.au=Muleti,%20Satish&rft.date=2020-09-21&rft.spage=1&rft.epage=3&rft.pages=1-3&rft.eissn=2375-5318&rft_id=info:doi/10.1109/RadarConf2043947.2020.9266620&rft.eisbn=9781728189420&rft.eisbn_list=172818942X&rft_dat=%3Cieee_CHZPO%3E9266620%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-45c1940204b59404cd92ded81bb8b5a83491ae8bf9cedfd70e8263a3c84b66493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9266620&rfr_iscdi=true