Loading…
Deep Learning and Information Geometry for Drone Micro-Doppler Radar Classification
In this work, we build dedicated learning models for micro-Doppler radar time series classification. We develop both deep temporal architectures based on time-frequency representations, and also directly study the signal's underlying statistical Gaussian process using Information Geometry on Ri...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, we build dedicated learning models for micro-Doppler radar time series classification. We develop both deep temporal architectures based on time-frequency representations, and also directly study the signal's underlying statistical Gaussian process using Information Geometry on Riemannian manifolds by developing and improving symmetric positive definite (SPD) neural networks. We also propose the aggregation of all proposed models in a single, highly performing classification pipeline. |
---|---|
ISSN: | 2375-5318 |
DOI: | 10.1109/RadarConf2043947.2020.9266689 |