Loading…

Reconfigurable Distribution Automation and Control Laboratory: Solar Microgrid Experiments

Renewable distributed resources, energy storage systems, and improved load control options are introducing new challenges in electric power distribution. It is necessary to integrate such smart grid concepts into formal power engineering curricula. To help meet this need, solar microgrid experiments...

Full description

Saved in:
Bibliographic Details
Main Authors: Coleman, Nick, Ogawa, Kara, Hill, Jesse, Miu, Karen
Format: Conference Proceeding
Language:English
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Renewable distributed resources, energy storage systems, and improved load control options are introducing new challenges in electric power distribution. It is necessary to integrate such smart grid concepts into formal power engineering curricula. To help meet this need, solar microgrid experiments are being developed at Drexel University. This work presents: first, an overview of the laboratory-scale microgrid equipment at Drexel; second, upgrades to the distribution energy management system in the Reconfigurable Distribution Automation and Control Laboratory; third, a detailed educational microgrid experiment; and fourth, corresponding pre- and post-laboratory assignments. In the experiment, students analyze a microgrid network in grid-powered, grid-interactive, and island modes with a renewable source that is not electrically (or physically) co-located with the utility supply. Students will observe power flow characteristics in each mode. In island mode, students will make network or load control decisions in order to satisfy the operating constraints, and then connect the renewable source to the node of their choice.
ISSN:1944-9933
DOI:10.1109/PESGM41954.2020.9281853