Loading…
Static Voltage Stability Margin Prediction of Island Microgrid Based on Tri-Training-Lasso-BP Network
In this paper, neural network, semi-supervised training, integrated learning, and other techniques are applied to the prediction and analysis of static voltage stability margin of island microgrid power systems and an online prediction method based on the Tri-Training-Lasso-BP network is proposed. T...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Tang, Yingqi Tang, Kunjie Zhu, Chengzhi Dong, Shufeng Lin, Liheng Wu, Jincheng |
description | In this paper, neural network, semi-supervised training, integrated learning, and other techniques are applied to the prediction and analysis of static voltage stability margin of island microgrid power systems and an online prediction method based on the Tri-Training-Lasso-BP network is proposed. The network consists of Tri-Training, the least absolute shrinkage and select operator (Lasso) algorithm and the backpropagation (BP) neural network. The analysis results on an 115-node example show that the proposed method can reduce the requirement of the data volume of the training set, take advantage of the massive data collected during the daily operation of the power system, improve the prediction accuracy of the network and reduce manual intervention. Finally, this paper uses statistical methods to make a comprehensive and objective description of the performance of the method. |
doi_str_mv | 10.1109/PESGM41954.2020.9282010 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9282010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9282010</ieee_id><sourcerecordid>9282010</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-d22989f4d78ae93ad359f98f00077f9ff09d4d3c5f40241ae809d4ef13bd463f3</originalsourceid><addsrcrecordid>eNotUM1KAzEYjIJgrX0CD-YFUvO33XxHW2otbLXQ6rWkm2T5dN2VJCB9e1fsXIaZgWEYQu4FnwrB4WG73K02WkChp5JLPgVpJBf8gtyIUhpRFNyYSzISoDUDUOqaTFL64AMKXc5mckT8LtuMNX3v22wbTwd5xBbziW5sbLCj2-gd1hn7jvaBrlNrO0c3WMe-iejo3Cbv6BDuI7J9tNhh17DKptSz-Za--PzTx89bchVsm_zkzGPy9rTcL55Z9bpaLx4rhpKrzJyUYCBoVxrrQVmnCghgwrC3LAOEwMFpp-oiaC61sN78GT4IdXR6poIak7v_XvTeH74jftl4OpxfUb93qVe2</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Static Voltage Stability Margin Prediction of Island Microgrid Based on Tri-Training-Lasso-BP Network</title><source>IEEE Xplore All Conference Series</source><creator>Tang, Yingqi ; Tang, Kunjie ; Zhu, Chengzhi ; Dong, Shufeng ; Lin, Liheng ; Wu, Jincheng</creator><creatorcontrib>Tang, Yingqi ; Tang, Kunjie ; Zhu, Chengzhi ; Dong, Shufeng ; Lin, Liheng ; Wu, Jincheng</creatorcontrib><description>In this paper, neural network, semi-supervised training, integrated learning, and other techniques are applied to the prediction and analysis of static voltage stability margin of island microgrid power systems and an online prediction method based on the Tri-Training-Lasso-BP network is proposed. The network consists of Tri-Training, the least absolute shrinkage and select operator (Lasso) algorithm and the backpropagation (BP) neural network. The analysis results on an 115-node example show that the proposed method can reduce the requirement of the data volume of the training set, take advantage of the massive data collected during the daily operation of the power system, improve the prediction accuracy of the network and reduce manual intervention. Finally, this paper uses statistical methods to make a comprehensive and objective description of the performance of the method.</description><identifier>EISSN: 1944-9933</identifier><identifier>EISBN: 1728155088</identifier><identifier>EISBN: 9781728155081</identifier><identifier>DOI: 10.1109/PESGM41954.2020.9282010</identifier><language>eng</language><publisher>IEEE</publisher><subject>ensemble learning ; island microgrid ; static voltage stability margin ; Tri-Training-Lasso-BP network</subject><ispartof>2020 IEEE Power & Energy Society General Meeting (PESGM), 2020, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9282010$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,23911,23912,25121,27906,54536,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9282010$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tang, Yingqi</creatorcontrib><creatorcontrib>Tang, Kunjie</creatorcontrib><creatorcontrib>Zhu, Chengzhi</creatorcontrib><creatorcontrib>Dong, Shufeng</creatorcontrib><creatorcontrib>Lin, Liheng</creatorcontrib><creatorcontrib>Wu, Jincheng</creatorcontrib><title>Static Voltage Stability Margin Prediction of Island Microgrid Based on Tri-Training-Lasso-BP Network</title><title>2020 IEEE Power & Energy Society General Meeting (PESGM)</title><addtitle>PESGM</addtitle><description>In this paper, neural network, semi-supervised training, integrated learning, and other techniques are applied to the prediction and analysis of static voltage stability margin of island microgrid power systems and an online prediction method based on the Tri-Training-Lasso-BP network is proposed. The network consists of Tri-Training, the least absolute shrinkage and select operator (Lasso) algorithm and the backpropagation (BP) neural network. The analysis results on an 115-node example show that the proposed method can reduce the requirement of the data volume of the training set, take advantage of the massive data collected during the daily operation of the power system, improve the prediction accuracy of the network and reduce manual intervention. Finally, this paper uses statistical methods to make a comprehensive and objective description of the performance of the method.</description><subject>ensemble learning</subject><subject>island microgrid</subject><subject>static voltage stability margin</subject><subject>Tri-Training-Lasso-BP network</subject><issn>1944-9933</issn><isbn>1728155088</isbn><isbn>9781728155081</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotUM1KAzEYjIJgrX0CD-YFUvO33XxHW2otbLXQ6rWkm2T5dN2VJCB9e1fsXIaZgWEYQu4FnwrB4WG73K02WkChp5JLPgVpJBf8gtyIUhpRFNyYSzISoDUDUOqaTFL64AMKXc5mckT8LtuMNX3v22wbTwd5xBbziW5sbLCj2-gd1hn7jvaBrlNrO0c3WMe-iejo3Cbv6BDuI7J9tNhh17DKptSz-Za--PzTx89bchVsm_zkzGPy9rTcL55Z9bpaLx4rhpKrzJyUYCBoVxrrQVmnCghgwrC3LAOEwMFpp-oiaC61sN78GT4IdXR6poIak7v_XvTeH74jftl4OpxfUb93qVe2</recordid><startdate>20200802</startdate><enddate>20200802</enddate><creator>Tang, Yingqi</creator><creator>Tang, Kunjie</creator><creator>Zhu, Chengzhi</creator><creator>Dong, Shufeng</creator><creator>Lin, Liheng</creator><creator>Wu, Jincheng</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20200802</creationdate><title>Static Voltage Stability Margin Prediction of Island Microgrid Based on Tri-Training-Lasso-BP Network</title><author>Tang, Yingqi ; Tang, Kunjie ; Zhu, Chengzhi ; Dong, Shufeng ; Lin, Liheng ; Wu, Jincheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-d22989f4d78ae93ad359f98f00077f9ff09d4d3c5f40241ae809d4ef13bd463f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ensemble learning</topic><topic>island microgrid</topic><topic>static voltage stability margin</topic><topic>Tri-Training-Lasso-BP network</topic><toplevel>online_resources</toplevel><creatorcontrib>Tang, Yingqi</creatorcontrib><creatorcontrib>Tang, Kunjie</creatorcontrib><creatorcontrib>Zhu, Chengzhi</creatorcontrib><creatorcontrib>Dong, Shufeng</creatorcontrib><creatorcontrib>Lin, Liheng</creatorcontrib><creatorcontrib>Wu, Jincheng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tang, Yingqi</au><au>Tang, Kunjie</au><au>Zhu, Chengzhi</au><au>Dong, Shufeng</au><au>Lin, Liheng</au><au>Wu, Jincheng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Static Voltage Stability Margin Prediction of Island Microgrid Based on Tri-Training-Lasso-BP Network</atitle><btitle>2020 IEEE Power & Energy Society General Meeting (PESGM)</btitle><stitle>PESGM</stitle><date>2020-08-02</date><risdate>2020</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>1944-9933</eissn><eisbn>1728155088</eisbn><eisbn>9781728155081</eisbn><abstract>In this paper, neural network, semi-supervised training, integrated learning, and other techniques are applied to the prediction and analysis of static voltage stability margin of island microgrid power systems and an online prediction method based on the Tri-Training-Lasso-BP network is proposed. The network consists of Tri-Training, the least absolute shrinkage and select operator (Lasso) algorithm and the backpropagation (BP) neural network. The analysis results on an 115-node example show that the proposed method can reduce the requirement of the data volume of the training set, take advantage of the massive data collected during the daily operation of the power system, improve the prediction accuracy of the network and reduce manual intervention. Finally, this paper uses statistical methods to make a comprehensive and objective description of the performance of the method.</abstract><pub>IEEE</pub><doi>10.1109/PESGM41954.2020.9282010</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 1944-9933 |
ispartof | 2020 IEEE Power & Energy Society General Meeting (PESGM), 2020, p.1-5 |
issn | 1944-9933 |
language | eng |
recordid | cdi_ieee_primary_9282010 |
source | IEEE Xplore All Conference Series |
subjects | ensemble learning island microgrid static voltage stability margin Tri-Training-Lasso-BP network |
title | Static Voltage Stability Margin Prediction of Island Microgrid Based on Tri-Training-Lasso-BP Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A01%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Static%20Voltage%20Stability%20Margin%20Prediction%20of%20Island%20Microgrid%20Based%20on%20Tri-Training-Lasso-BP%20Network&rft.btitle=2020%20IEEE%20Power%20&%20Energy%20Society%20General%20Meeting%20(PESGM)&rft.au=Tang,%20Yingqi&rft.date=2020-08-02&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=1944-9933&rft_id=info:doi/10.1109/PESGM41954.2020.9282010&rft.eisbn=1728155088&rft.eisbn_list=9781728155081&rft_dat=%3Cieee_CHZPO%3E9282010%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-d22989f4d78ae93ad359f98f00077f9ff09d4d3c5f40241ae809d4ef13bd463f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9282010&rfr_iscdi=true |