Loading…

Static Voltage Stability Margin Prediction of Island Microgrid Based on Tri-Training-Lasso-BP Network

In this paper, neural network, semi-supervised training, integrated learning, and other techniques are applied to the prediction and analysis of static voltage stability margin of island microgrid power systems and an online prediction method based on the Tri-Training-Lasso-BP network is proposed. T...

Full description

Saved in:
Bibliographic Details
Main Authors: Tang, Yingqi, Tang, Kunjie, Zhu, Chengzhi, Dong, Shufeng, Lin, Liheng, Wu, Jincheng
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Tang, Yingqi
Tang, Kunjie
Zhu, Chengzhi
Dong, Shufeng
Lin, Liheng
Wu, Jincheng
description In this paper, neural network, semi-supervised training, integrated learning, and other techniques are applied to the prediction and analysis of static voltage stability margin of island microgrid power systems and an online prediction method based on the Tri-Training-Lasso-BP network is proposed. The network consists of Tri-Training, the least absolute shrinkage and select operator (Lasso) algorithm and the backpropagation (BP) neural network. The analysis results on an 115-node example show that the proposed method can reduce the requirement of the data volume of the training set, take advantage of the massive data collected during the daily operation of the power system, improve the prediction accuracy of the network and reduce manual intervention. Finally, this paper uses statistical methods to make a comprehensive and objective description of the performance of the method.
doi_str_mv 10.1109/PESGM41954.2020.9282010
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9282010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9282010</ieee_id><sourcerecordid>9282010</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-d22989f4d78ae93ad359f98f00077f9ff09d4d3c5f40241ae809d4ef13bd463f3</originalsourceid><addsrcrecordid>eNotUM1KAzEYjIJgrX0CD-YFUvO33XxHW2otbLXQ6rWkm2T5dN2VJCB9e1fsXIaZgWEYQu4FnwrB4WG73K02WkChp5JLPgVpJBf8gtyIUhpRFNyYSzISoDUDUOqaTFL64AMKXc5mckT8LtuMNX3v22wbTwd5xBbziW5sbLCj2-gd1hn7jvaBrlNrO0c3WMe-iejo3Cbv6BDuI7J9tNhh17DKptSz-Za--PzTx89bchVsm_zkzGPy9rTcL55Z9bpaLx4rhpKrzJyUYCBoVxrrQVmnCghgwrC3LAOEwMFpp-oiaC61sN78GT4IdXR6poIak7v_XvTeH74jftl4OpxfUb93qVe2</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Static Voltage Stability Margin Prediction of Island Microgrid Based on Tri-Training-Lasso-BP Network</title><source>IEEE Xplore All Conference Series</source><creator>Tang, Yingqi ; Tang, Kunjie ; Zhu, Chengzhi ; Dong, Shufeng ; Lin, Liheng ; Wu, Jincheng</creator><creatorcontrib>Tang, Yingqi ; Tang, Kunjie ; Zhu, Chengzhi ; Dong, Shufeng ; Lin, Liheng ; Wu, Jincheng</creatorcontrib><description>In this paper, neural network, semi-supervised training, integrated learning, and other techniques are applied to the prediction and analysis of static voltage stability margin of island microgrid power systems and an online prediction method based on the Tri-Training-Lasso-BP network is proposed. The network consists of Tri-Training, the least absolute shrinkage and select operator (Lasso) algorithm and the backpropagation (BP) neural network. The analysis results on an 115-node example show that the proposed method can reduce the requirement of the data volume of the training set, take advantage of the massive data collected during the daily operation of the power system, improve the prediction accuracy of the network and reduce manual intervention. Finally, this paper uses statistical methods to make a comprehensive and objective description of the performance of the method.</description><identifier>EISSN: 1944-9933</identifier><identifier>EISBN: 1728155088</identifier><identifier>EISBN: 9781728155081</identifier><identifier>DOI: 10.1109/PESGM41954.2020.9282010</identifier><language>eng</language><publisher>IEEE</publisher><subject>ensemble learning ; island microgrid ; static voltage stability margin ; Tri-Training-Lasso-BP network</subject><ispartof>2020 IEEE Power &amp; Energy Society General Meeting (PESGM), 2020, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9282010$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,23911,23912,25121,27906,54536,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9282010$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tang, Yingqi</creatorcontrib><creatorcontrib>Tang, Kunjie</creatorcontrib><creatorcontrib>Zhu, Chengzhi</creatorcontrib><creatorcontrib>Dong, Shufeng</creatorcontrib><creatorcontrib>Lin, Liheng</creatorcontrib><creatorcontrib>Wu, Jincheng</creatorcontrib><title>Static Voltage Stability Margin Prediction of Island Microgrid Based on Tri-Training-Lasso-BP Network</title><title>2020 IEEE Power &amp; Energy Society General Meeting (PESGM)</title><addtitle>PESGM</addtitle><description>In this paper, neural network, semi-supervised training, integrated learning, and other techniques are applied to the prediction and analysis of static voltage stability margin of island microgrid power systems and an online prediction method based on the Tri-Training-Lasso-BP network is proposed. The network consists of Tri-Training, the least absolute shrinkage and select operator (Lasso) algorithm and the backpropagation (BP) neural network. The analysis results on an 115-node example show that the proposed method can reduce the requirement of the data volume of the training set, take advantage of the massive data collected during the daily operation of the power system, improve the prediction accuracy of the network and reduce manual intervention. Finally, this paper uses statistical methods to make a comprehensive and objective description of the performance of the method.</description><subject>ensemble learning</subject><subject>island microgrid</subject><subject>static voltage stability margin</subject><subject>Tri-Training-Lasso-BP network</subject><issn>1944-9933</issn><isbn>1728155088</isbn><isbn>9781728155081</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotUM1KAzEYjIJgrX0CD-YFUvO33XxHW2otbLXQ6rWkm2T5dN2VJCB9e1fsXIaZgWEYQu4FnwrB4WG73K02WkChp5JLPgVpJBf8gtyIUhpRFNyYSzISoDUDUOqaTFL64AMKXc5mckT8LtuMNX3v22wbTwd5xBbziW5sbLCj2-gd1hn7jvaBrlNrO0c3WMe-iejo3Cbv6BDuI7J9tNhh17DKptSz-Za--PzTx89bchVsm_zkzGPy9rTcL55Z9bpaLx4rhpKrzJyUYCBoVxrrQVmnCghgwrC3LAOEwMFpp-oiaC61sN78GT4IdXR6poIak7v_XvTeH74jftl4OpxfUb93qVe2</recordid><startdate>20200802</startdate><enddate>20200802</enddate><creator>Tang, Yingqi</creator><creator>Tang, Kunjie</creator><creator>Zhu, Chengzhi</creator><creator>Dong, Shufeng</creator><creator>Lin, Liheng</creator><creator>Wu, Jincheng</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20200802</creationdate><title>Static Voltage Stability Margin Prediction of Island Microgrid Based on Tri-Training-Lasso-BP Network</title><author>Tang, Yingqi ; Tang, Kunjie ; Zhu, Chengzhi ; Dong, Shufeng ; Lin, Liheng ; Wu, Jincheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-d22989f4d78ae93ad359f98f00077f9ff09d4d3c5f40241ae809d4ef13bd463f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ensemble learning</topic><topic>island microgrid</topic><topic>static voltage stability margin</topic><topic>Tri-Training-Lasso-BP network</topic><toplevel>online_resources</toplevel><creatorcontrib>Tang, Yingqi</creatorcontrib><creatorcontrib>Tang, Kunjie</creatorcontrib><creatorcontrib>Zhu, Chengzhi</creatorcontrib><creatorcontrib>Dong, Shufeng</creatorcontrib><creatorcontrib>Lin, Liheng</creatorcontrib><creatorcontrib>Wu, Jincheng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tang, Yingqi</au><au>Tang, Kunjie</au><au>Zhu, Chengzhi</au><au>Dong, Shufeng</au><au>Lin, Liheng</au><au>Wu, Jincheng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Static Voltage Stability Margin Prediction of Island Microgrid Based on Tri-Training-Lasso-BP Network</atitle><btitle>2020 IEEE Power &amp; Energy Society General Meeting (PESGM)</btitle><stitle>PESGM</stitle><date>2020-08-02</date><risdate>2020</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>1944-9933</eissn><eisbn>1728155088</eisbn><eisbn>9781728155081</eisbn><abstract>In this paper, neural network, semi-supervised training, integrated learning, and other techniques are applied to the prediction and analysis of static voltage stability margin of island microgrid power systems and an online prediction method based on the Tri-Training-Lasso-BP network is proposed. The network consists of Tri-Training, the least absolute shrinkage and select operator (Lasso) algorithm and the backpropagation (BP) neural network. The analysis results on an 115-node example show that the proposed method can reduce the requirement of the data volume of the training set, take advantage of the massive data collected during the daily operation of the power system, improve the prediction accuracy of the network and reduce manual intervention. Finally, this paper uses statistical methods to make a comprehensive and objective description of the performance of the method.</abstract><pub>IEEE</pub><doi>10.1109/PESGM41954.2020.9282010</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1944-9933
ispartof 2020 IEEE Power & Energy Society General Meeting (PESGM), 2020, p.1-5
issn 1944-9933
language eng
recordid cdi_ieee_primary_9282010
source IEEE Xplore All Conference Series
subjects ensemble learning
island microgrid
static voltage stability margin
Tri-Training-Lasso-BP network
title Static Voltage Stability Margin Prediction of Island Microgrid Based on Tri-Training-Lasso-BP Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A01%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Static%20Voltage%20Stability%20Margin%20Prediction%20of%20Island%20Microgrid%20Based%20on%20Tri-Training-Lasso-BP%20Network&rft.btitle=2020%20IEEE%20Power%20&%20Energy%20Society%20General%20Meeting%20(PESGM)&rft.au=Tang,%20Yingqi&rft.date=2020-08-02&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=1944-9933&rft_id=info:doi/10.1109/PESGM41954.2020.9282010&rft.eisbn=1728155088&rft.eisbn_list=9781728155081&rft_dat=%3Cieee_CHZPO%3E9282010%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-d22989f4d78ae93ad359f98f00077f9ff09d4d3c5f40241ae809d4ef13bd463f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9282010&rfr_iscdi=true